Astro 250 — Planetary Dynamics — Problem Set 2

Do at least 1 out of 3.

Readings: Murray & Dermott 3.2-3.6, 3.8, 3.9 (up through page 98), 3.11. Optional: sec-
tion 3.3.2 of BT up to equation (3.124), keeping in mind that BT’s treatment in Chapter
3 is meant for generic bar potentials and is not specific to the circular restricted 3-body
problem. Also optional: BT section 8.2 up through “case (c) adiabatic invariance,” and
section 8.3 up through equation (8.92).

Problem 1. Impulse approximation

Consider close encounters between a test particle and the secondary mass ms in the
restricted 3-body problem with small mass ratio between the secondary and the primary,
u < 1. Take the secondary mass to occupy a perfectly circular orbit of radius ag = 1.
For parts (a)—(d), assume that the test particle is inserted at opposition on a very nearly
circular orbit with semi-major axis a = 1 — z and that 423 < z < 1.

a) How long does it take the test particle to move an azimuthal distance 2x relative
to ms? Estimate the time rate of change of x, &, during the encounter by calculating
the radial impulse the test particle receives when it moves past mo on an unperturbed
orbit.

b) Estimate the eccentricity, Ae, that results from the initial encounter of the test
particle with mgy. Neglect the Coriolis acceleration which only introduces a numerical
factor of order unity. Express Ae as a function of p and .

c) Use the Jacobi constant to estimate the change in semi-major axis, Aa, that
results from the encounter. You may find it helpful to read the section in the text on
the Tisserand relation before attempting this part. Express Aa as a function of u and
x and include its sign.

d) What is the change in inertial space angular momentum, Ah, suffered by the test
particle in this initial encounter? Express Ah as a function of y and z and include its
sign.

e) Calculate the radial spacing, da, between the location of neighboring principal
mean motion resonances. Each resonance is characterized by a positive integer p. Con-
secutive encounters of an unperturbed test particle moving on the p** resonant orbit
occur every p orbital periods of the secondary mass. Express da as a function of p.

f) Find the critical z at which Aa = da. Express xqi as a function of pu. This
expression can be compared with Wisdom’s resonance overlap criterion for chaos, a
topic we will cover later.



g) Assume that at each subsequent encounter with mg, the test particle’s angular
momentum changes by the amount Ah calculated in part (d). Calculate an approximate
expression for the time-averaged torque, T, on the test particle. Express T" as a function
of 1 and z and include its sign. This expression is useful in studies of ring shepherding;
can you see why?

Problem 2. Tadpoles and Horseshoes

Consider the circular restricted three-body problem. Start from the equation of
motion of the test particle, expressed in polar co-ordinates in the co-rotating frame:
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where U is the celestial mechanician’s potential in the rotating frame (the so-called
“pseudo-potential”):
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Take p < 1. Here r is the distance of the particle to the center of mass, r; is the distance
of the particle to the primary of mass 1 — u, and 79 is the distance of the particle to the
secondary of mass u. The secondary executes a perfectly circular orbit of radius 1 from
the primary at an angular frequency of 1.

Describe the position of the test particle in terms of its radial deviation away from
the unit circle: A =r—1 <« 1. We will derive an equation for the shapes of those orbits
that librate about the L, and Ls points—so-called tadpole and horseshoe orbits. We
will also derive an expression for the libration periods of small tadpole orbits. To filter
out the fast epicyclic motion and select only the slow motion of libration about L4 and
L5, take d/dt < 1.

a) Expand the potential retaining terms of order A, A2, and p. (Start from the law
of cosines to write down expressions for 1 and rs.)

b) Show that to leading order in the radial component of the equation of motion,

3A + 20 ~ 0.

c¢) Show that to leading order in the azimuthal component of the equation of motion,
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where 6 < 27 so that sin(0/2) > 0.

d) Derive the integral relation
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where B is a constant of integration. This equation yields the shape of the tad-
pole/horseshoe orbit. Whether the orbit is a tadpole or horseshoe depends on the value
of B.

e) What value of B = By corresponds to the triangular equilibrium points, 6§ = 7/3
(Ly) and @ = 57 /3 (Ls)?

f) What value of B = B; corresponds to the maximal tadpole orbit, i.e., the tadpole
orbit which extends to L3? How close does this orbit get to the secondary? What is its
maximum radial width? For B > Bj, the orbit is a horseshoe that encircles Lg.

g) What value of B = By corresponds to the maximal horseshoe orbit, i.e., the
horseshoe orbit that approaches the Hill sphere of the secondary? For these orbits,
and 27 — 0 achieve minimum values equal to Fu!'/3 where F is a constant of order unity.
What is the maximum radial width of these orbits?

h) For By < B < By, calculate the endpoints of small tadpole orbits, i.e., those values
of 8 where § = 0, for tadpole orbits which never stray far from the Lagrange point about
which they librate. Use the relations under (b) and (d). Express the endpoint locations
in terms of B.

i) Use (b), (d), and (h) to derive an expression for the (slow) period of libration of
small tadpole orbits. You will need to expand the expression in brackets in (d) about
0 = m/3 or § = 57/3. Your expression should not depend on the size of the tadpole in
the small tadpole limit. Evaluate this libration period for a Trojan asteroid co-orbiting
with Jupiter.

Problem 3. Isolation of Planetary Embryos

Consider a disk composed of massive planetesimals. The most massive planetesimal
has the largest cross-section for accreting other bodies, not only because it has the
largest geometric radius but also because it possesses the largest gravitational focussing
factor. Thus, the most massive body in the swarm tends to accrete all other bodies in
its vicinity. This problem computes the point at which this initial feeding frenzy stops.

A body of mass M at distance r from a star of mass M, can accrete other bodies
within a few Hill radii of its orbit:
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where numerical experiments demonstrate that B ~ 2.5 for a dynamically cold disk of
planetesimals (Greenberg et al. 1991, 94, 98). Take o to be the surface mass density
(mass per unit face-on area) of the planetesimal disk. Derive an expression for the
“isolation mass,” the maximum mass which can accrete within such a disk at every
radius. Evaluate the isolation mass, in units of an Earth mass, as a function of disk radius
for conditions appropriate to the minimum-mass solar nebula: o ~ 20(r/AU)~3/2 g/ cm?,
M, = Mg.



