
Astro 250 – Planetary Dynamics – Problem Set 4

Problem 1 is REQUIRED. Do at least 1 other problem in
addition to Problem 1.

Readings: Murray & Dermott Chapter 8: 8.3–8.7, and Agol et al. 2005 (we read this article

already) on the libration periods and maximum libration amplitudes of first-order resonances

in the high and low-eccentricity limits. I condensed all of this material into lecture on Oct

14, so you can just read your lecture notes.

Problem 1: REQUIRED

Write down 1 question or contribute something related to the journal articles on the Google

Doc linked to the class webpage.

Problem 2. An Order-of-Magnitude Understanding of First-Order
Resonances

Consider a test particle in a first-order j : j + 1 resonance established by an interior planet.

The interior planet has mass µ and occupies a circular orbit of radius 1, in units where

G = Mcentral = 1. The test particle has eccentricity e.

(a) At the end of lecture on October 14, we derived, following Agol et al. (2005), the libration

period Plib and maximum libration width ∆alib, in the limit of large eccentricity e > µ1/3.

Repeat this derivation, explaining all steps.

(b) Derive Plib and ∆alib in the limit of low eccentricity e < µ1/3. Note the results you have

derived are not found in Murray & Dermott; apparently MD has the wrong results for the

low e limit. Compare your answer to Agol et al. (2005).

For both parts (a) and (b), you will use the Tisserand relation for the encounter problem:

∆(x2) ∼ ∆(e2), where ∆ denotes the change due to a single encounter (conjunction), and

x� 1 is the semimajor axis difference between the test particle and the perturber.

Problem 3. Inclination Resonance

In lecture on October 14 (and in Section 8.3 of MD), we understood using simple pictures,

kicks at conjunctions, and Gauss’s perturbation equations (basically ȧ ∝ T ) why first-order

resonances are stable equilibria. We can also understand why a first-order resonance for a

test particle on an eccentric orbit outside a circular planet has a stable point at apoapse;

e.g., for the 3:2 resonance, the resonance angle φ = 3λ′ − 2λ− ω̃′ librates about π.
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Use similar techniques to understand the stability of the corresponding (i′)2 resonance, for

which the resonance angle φ = 6λ′ − 4λ − 2Ω′. Explain using simple pictures, kicks at

conjunctions, and Gauss’s perturbation equations why an inclination resonance can be stable.

About what value does φ librate?

Problem 4. N petals, forced eccentricities, and another definition
of a resonant width

This problem is relevant for the resonant edges of planetary rings.

The edges of planetary rings are near principal Lindblad resonances of azimuthal wavenum-

ber m established by shepherd satellites. At the exact resonance location,

(m∓ 1)n−mnp ± ˙̃ω = 0 . (1)

Here m is a positive integer, n and np are the mean motions of a ring (test) particle and

of the perturbing shepherd, and ˙̃ω is the apsidal precession rate of the ring particle. The

upper/lower signs correspond to inner/outer Lindblad resonances.

Take the shepherd to be outside the ring. The resonant disturbing function of the shep-

herd is

Rp,res =
Gmp

ap

f(α)e cos φ (2)

φ = (m− 1)λ−mλp + ω̃ (3)

where λ’s are mean longitudes, e is the eccentricity of the test particle, and f(α) = f(a/ap)

is a dimensionless function of the ratio of semi-major axes of the particle to the perturber.

f is often of order unity.

a) Calculate ˙̃ωres and ėres from Rp,res using Lagrange’s planetary equations. (We are

neglecting the variation in semi-major axis in this first cut to the problem. We can always

compute it later.)

b) It is evident that φ̇ = (m − 1)n − mnp + ˙̃ω. In reality, ˙̃ω = ˙̃ωres + ˙̃ωsec. For this

problem, we will consider m 6= 1 and say that ˙̃ωsec � ˙̃ωres. (Note that we cannot ignore ˙̃ωsec

if m = 1; see a problem on a previous problem set on the Titan ringlet.) Many planetary

rings have their edges located at m ∼ 10.

Similarly ignore ėsec.
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Define ε(a) = (m− 1)n−mnp to write

φ̇ = ε(a) + ˙̃ωres (4)

Now take the particle to be firmly in the resonance with vanishingly small libration ampli-

tude; that is, consider the limit ė → 0 and φ̇ → 0. What are the equilibrium values for e

and φ? The value for e that you have deduced is called the “forced eccentricity” (as opposed

to the “free eccentricity,” which is the amplitude of libration in (h = e cos φ, k = e sin φ)

space; see problem on previous problem set on the Titan ringlet). Remember that ε(a) can

be either negative or positive, so you should never get a negative eccentricity.

c) Express the eccentricity e in terms of the distance, x = a− a0, where (m− 1)n(a0) =

mnp. Of course, we are considering x� a0.

d) In the frame co-rotating with the shepherd (which we take to be moving on a perfectly

circular orbit), SKETCH APPROXIMATELY the trajectories of ring particles for a few

values of x, both positive and negative. You may find it helpful to think in terms of epicyclic

frequency, κ = n− ˙̃ω (the frequency of radial oscillations), and the Doppler-shifted azimuthal

frequency, n − np. The particle will make a certain number of radial oscillations for every

azimuthal oscillation.

e) What is the value of xcrit > 0 for which a trajectory at x = xcrit just collides with

a trajectory at x = −xcrit (i.e., on the flip side of the resonance)? This is an estimate of

the “width” of the resonance; it is an estimate of the width of the region near the edge of

the planetary ring where perturbations by the shepherd satellite are greatest; within xcrit

of a0, the velocity dispersion of ring particles can be substantially greater than the velocity

dispersion of ring particles in the remainder of the ring that are well removed from the

resonance.
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