# Astro 250 – Planetary Dynamics – Problem Set 4 Problem 1 is REQUIRED. Do at least 1 other problem in addition to Problem 1.

Readings: Murray & Dermott Chapter 8: 8.3–8.7, and Agol et al. 2005 (we read this article already) on the libration periods and maximum libration amplitudes of first-order resonances in the high and low-eccentricity limits. I condensed all of this material into lecture on Oct 14, so you can just read your lecture notes.

#### Problem 1: REQUIRED

Write down 1 question or contribute something related to the journal articles on the Google Doc linked to the class webpage.

### Problem 2. An Order-of-Magnitude Understanding of First-Order Resonances

Consider a test particle in a first-order j: j+1 resonance established by an interior planet. The interior planet has mass  $\mu$  and occupies a circular orbit of radius 1, in units where  $G = M_{\text{central}} = 1$ . The test particle has eccentricity e.

- (a) At the end of lecture on October 14, we derived, following Agol et al. (2005), the libration period  $P_{\text{lib}}$  and maximum libration width  $\Delta a_{\text{lib}}$ , in the limit of large eccentricity  $e > \mu^{1/3}$ . Repeat this derivation, explaining all steps.
- (b) Derive  $P_{\text{lib}}$  and  $\Delta a_{\text{lib}}$  in the limit of low eccentricity  $e < \mu^{1/3}$ . Note the results you have derived are not found in Murray & Dermott; apparently MD has the wrong results for the low e limit. Compare your answer to Agol et al. (2005).

For both parts (a) and (b), you will use the Tisserand relation for the encounter problem:  $\Delta(x^2) \sim \Delta(e^2)$ , where  $\Delta$  denotes the change due to a single encounter (conjunction), and  $x \ll 1$  is the semimajor axis difference between the test particle and the perturber.

#### Problem 3. Inclination Resonance

In lecture on October 14 (and in Section 8.3 of MD), we understood using simple pictures, kicks at conjunctions, and Gauss's perturbation equations (basically  $\dot{a} \propto T$ ) why first-order resonances are stable equilibria. We can also understand why a first-order resonance for a test particle on an eccentric orbit outside a circular planet has a stable point at apoapse; e.g., for the 3:2 resonance, the resonance angle  $\phi = 3\lambda' - 2\lambda - \tilde{\omega}'$  librates about  $\pi$ .

Use similar techniques to understand the stability of the corresponding  $(i')^2$  resonance, for which the resonance angle  $\phi = 6\lambda' - 4\lambda - 2\Omega'$ . Explain using simple pictures, kicks at conjunctions, and Gauss's perturbation equations why an inclination resonance can be stable. About what value does  $\phi$  librate?

## Problem 4. N petals, forced eccentricities, and another definition of a resonant width

This problem is relevant for the resonant edges of planetary rings.

The edges of planetary rings are near principal Lindblad resonances of azimuthal wavenumber m established by shepherd satellites. At the exact resonance location,

$$(m \mp 1)n - mn_p \pm \dot{\tilde{\omega}} = 0. \tag{1}$$

Here m is a positive integer, n and  $n_p$  are the mean motions of a ring (test) particle and of the perturbing shepherd, and  $\dot{\tilde{\omega}}$  is the apsidal precession rate of the ring particle. The upper/lower signs correspond to inner/outer Lindblad resonances.

Take the shepherd to be outside the ring. The resonant disturbing function of the shepherd is

$$R_{p,res} = \frac{Gm_p}{a_p} f(\alpha) e \cos \phi \tag{2}$$

$$\phi = (m-1)\lambda - m\lambda_n + \tilde{\omega} \tag{3}$$

where  $\lambda$ 's are mean longitudes, e is the eccentricity of the test particle, and  $f(\alpha) = f(a/a_p)$  is a dimensionless function of the ratio of semi-major axes of the particle to the perturber. f is often of order unity.

- a) Calculate  $\dot{\tilde{\omega}}_{res}$  and  $\dot{e}_{res}$  from  $R_{p,res}$  using Lagrange's planetary equations. (We are neglecting the variation in semi-major axis in this first cut to the problem. We can always compute it later.)
- b) It is evident that  $\dot{\phi} = (m-1)n mn_p + \dot{\tilde{\omega}}$ . In reality,  $\dot{\tilde{\omega}} = \dot{\tilde{\omega}}_{res} + \dot{\tilde{\omega}}_{sec}$ . For this problem, we will consider  $m \neq 1$  and say that  $\dot{\tilde{\omega}}_{sec} \ll \dot{\tilde{\omega}}_{res}$ . (Note that we cannot ignore  $\dot{\tilde{\omega}}_{sec}$  if m=1; see a problem on a previous problem set on the Titan ringlet.) Many planetary rings have their edges located at  $m \sim 10$ .

Similarly ignore  $\dot{e}_{sec}$ .

Define  $\epsilon(a) = (m-1)n - mn_p$  to write

$$\dot{\phi} = \epsilon(a) + \dot{\tilde{\omega}}_{res} \tag{4}$$

Now take the particle to be firmly in the resonance with vanishingly small libration amplitude; that is, consider the limit  $\dot{e} \to 0$  and  $\dot{\phi} \to 0$ . What are the equilibrium values for e and  $\phi$ ? The value for e that you have deduced is called the "forced eccentricity" (as opposed to the "free eccentricity," which is the amplitude of libration in  $(h = e \cos \phi, k = e \sin \phi)$  space; see problem on previous problem set on the Titan ringlet). Remember that  $\epsilon(a)$  can be either negative or positive, so you should never get a negative eccentricity.

- c) Express the eccentricity e in terms of the distance,  $x = a a_0$ , where  $(m-1)n(a_0) = mn_p$ . Of course, we are considering  $x \ll a_0$ .
- d) In the frame co-rotating with the shepherd (which we take to be moving on a perfectly circular orbit), SKETCH APPROXIMATELY the trajectories of ring particles for a few values of x, both positive and negative. You may find it helpful to think in terms of epicyclic frequency,  $\kappa = n \dot{\tilde{\omega}}$  (the frequency of radial oscillations), and the Doppler-shifted azimuthal frequency,  $n n_p$ . The particle will make a certain number of radial oscillations for every azimuthal oscillation.
- e) What is the value of  $x_{crit} > 0$  for which a trajectory at  $x = x_{crit}$  just collides with a trajectory at  $x = -x_{crit}$  (i.e., on the flip side of the resonance)? This is an estimate of the "width" of the resonance; it is an estimate of the width of the region near the edge of the planetary ring where perturbations by the shepherd satellite are greatest; within  $x_{crit}$  of  $a_0$ , the velocity dispersion of ring particles can be substantially greater than the velocity dispersion of ring particles in the remainder of the ring that are well removed from the resonance.