Astrophysical Fluid Dynamics — Problem Set 10

Readings: Shu pages 372-376 on magnetospheres; Shu pages 98-101 on rotational instability and
Rayleigh’s criterion; Shapiro & Teukolsky’s “Black Holes, White Dwarfs, and Neutron Stars”,
Chapter 15 on magnetic accretion; Binney & Tremaine’s “Galactic Dynamics” on radial epicyclic
frequency

Problem 1. Magnetospheres

(a) [ points] The solar wind blows across the Earth but is largely deflected away by the Earth’s
magnetosphere. Estimate the radius r4 of the Earth’s magnetosphere, in units of the Earth’s
radius. This is the radius where the Earth’s magnetic pressure balances the pressure of the solar
wind. Use whatever you need to from class, including previous problem sets. The surface field of
the Earth is about 0.5 G (this is NOT the field strength at the magnetospheric boundary) and you
may model the Earth’s field as a dipole.

(b) [7 points] Consider now a different situation also involving a magnetosphere: an accretion disk
orbiting a magnetized star (as discussed in lecture). The accretion disk is truncated at its inner
edge by the star’s (closed) dipole field. Material from the disk diffuses (somehow, via instabilities
of some kind) onto the magnetic field lines and is funneled onto the magnetic poles of the star.
Our goal here is to derive a rough formula for the radius r 4 of the magnetosphere for this accretion
disk case. This problem was drawn from Shapiro & Teukolsky’s excellent textbook, “Black Holes,
White Dwarfs, and Neutron Stars”.

Figure 1 shows that the magnetospheric boundary is actually a fuzzy one, having some radial
thickness § over which flow variables like density, velocity, and magnetic field change radially.
Figure 1 also shows that the disk distorts the stellar magnetic field over a vertical length scale of
order the disk vertical thickness, H — specifically, the disk creates toroidal field (By) from a purely
poloidal (and mostly vertical B,) stellar field, as a consequence of flux freezing; the rotating disk
tries to “pull” field lines into the azimuthal direction. For disks, H < r, where r is the disk radius.

Assuming steady-state and axisymmetry, use the azimuthal d;—component of the momentum equa-
tion to derive the following order-of-magnitude relation:
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valid near the disk midplane at the magnetospheric boundary. Here vy is the disk gas velocity in
the azimuthal direction, M ~ 2wpHuv,r is the disk accretion rate (mass per time crossing a circle
of radius r; if this statement is not clear to you, try showing it to yourself), p is the gas density,
and v, is the gas radial velocity.

It is not obvious what ¢ should be, but there are two end-member cases we can consider: either
d ~ r (the largest relevant length scale) or § ~ H (the smallest relevant length scale; Rayleigh
stability supports the statement mind ~ H, as you will see in Problem 2 of this set).
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Figure 1: Schematic of magnetospheric truncation of an accretion disk.



To derive (1), assume |B,|/0 < |B.|/H and |Bg| ~ |B.| near the magnetospheric boundary. Both
assumptions should appear plausible from studying Figure 1.

Suppose 0 ~ r: solve (1) for r = r4 as a function of B, (the stellar surface field), R, (the stellar
radius), M, (the stellar mass), M, and fundamental constants. Assume a stellar dipole field.
Compare your expression to the one we derived in class for a spherically accreting stellar dipole.

Now suppose § ~ H: solve for r = r4 as above, now including H as part of your answer.

(c) [3 points] Estimate the radius r4 of the magnetosphere of a young star accreting from a disk,
assuming § ~ r.

Use parameters typical of a T Tauri star: M, ~ 1Mg, R, ~ 3Rg, a dipole field of surface strength
B, ~ 1 kG, and the median measured accretion rate of M ~ 10~8Mg yr~!. Express your answer
for r4 in units of AU.

It is known that extrasolar sub-Neptune planets appear less frequently at distances < 0.1 AU from
their central stars. This may be because their parent disks were truncated at ~0.1 AU by their
host star magnetospheres (no disk, no planet formation). Compare your estimate for r4 to this
observed drop-off radius in planet occurrence (see Lee & Chiang 2017).

Problem 2. Radial Epicycles and Rayleigh Stability

Consider an axisymmetric gas disk in 2D. The radial and azimuthal components of the momentum
equation read:
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where u, is the radial velocity, ug is the azimuthal velocity, r is the disk radius, P is pressure, p
is density, and ® is the gravitational potential (which may include a self-gravitational component
but doesn’t have to). On the left-hand side we have expanded out all the terms in (@ - V).

The convective derivative of any scalar x (the derivative following some scalar! property z of a fluid
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where the last equality follows because the disk is assumed axisymmetric at all times. Thus we are
really tracking how x changes with the radial motion of entire (circular) rings of gas.

T emphasize scalar here because you can also take the convective derivative of a vector, which of course is what is
done for, e.g., the inertial term (- V)4. The terms —u/r and ugu,/r in (2) and (3) arise from taking the convective

derivative of the unit vectors # and ¢—these are non-zero, even for axisymmetric flows.



(a) [3 points] Prove from the ¢-momentum equation that
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The quantity rug is the specific angular momentum of gas, which you have just shown is conserved
(even as the rings of gas move radially). Call £, = rugy = constant.

(b) [5 points] For the remaining parts of this problem, consider only a single “test ring” (read: test
particle) having a strictly constant £, = rug.

Show that the r-momentum equation for the test ring can be written as
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where we emphasize that £ is a strict constant, and h = [(1/p)dP is the enthalpy (which should
be familiar from the Bernoulli constant). The effective potential contains a centrifugal component
(sometimes called the “centrifugal barrier”), the gravitational component, and a pressure compo-
nent.

(c) [5 points] The equilibrium position r( of a ring of gas is given by du, /dt = 0. For small-amplitude
radial displacements about ry, we have
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which we recognize as the equation for a linear spring with frequency x given by
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where henceforth it is understood that we are evaluating quantities at 79 and so drop the |y,
notation. In particular we understand that £, in ®.g is specific to rg so that £, = uggrg = constant
(the specific angular momentum of the ring is conserved while it undergoes radial oscillations).

Neglect for now the enthalpy term in ®.g (in disks, h is generally small compared to ®; for now we
drop it entirely). Show that
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where © = ugy/r is the angular frequency. Show also that
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Thus when 2 > 0—corresponding to flows that are “Rayleigh-stable” —the specific angular mo-
mentum Qr? of the background disk increases with increasing radius.

To derive the above relations, recognize from (2) that the equilibrium rotation profile (for zero-
pressure disks) is just given by the gravitational potential via
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Note this last equation uses @, not ®.g.

(d) [2 points] Astronomers typically assume that k ~ Q. What is x for a galactic disk with a flat
rotation profile uy = Qr = constant, in units of Q7 What is x for a point-mass (a.k.a. Kepler)
potential?

(e) [10 points] Now restore the enthalpy h to consider pressure gradients. Take the gas to have
sound speed c¢s and recall from PS 1, Problem 3f that the disk’s vertical scale height H is given by
H/r = ¢s/(Qr). A disk has H/r < 1 (otherwise it wouldn’t be called a disk!) which implies the
enthalpy h < ® (you can check this to order-of-magnitude).

Consider the inner edge of a disk, where the gas pressure decreases (going inward) over a radial
length scale . Assume a point-mass gravitational potential. Make an order-of-magnitude estimate
for the smallest value § can be before gas at the disk edge becomes Rayleigh-unstable (k2 < 0).
Rayleigh stability sets a limit to how sharp disk edges can be (a fact of possible relevance to
determining the structure of gaps opened by planets in circumstellar disks).

Hint: the pressure profile P(r) of a smooth annular disk must have a negative second derivative
somewhere.



