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ABSTRACT5

We study the stability of a hot saturated gas coexisting with condensed particles in an6

optically thin medium. Such a situation may obtain downstream of a shock, at condensation7

fronts, or in vaporizing impacts. We show that the gas-particle mixture is subject to a thermal8

instability whereby a region of lower temperature and higher condensate density cools faster9

to condense faster. If the region of runaway condensation has a sound-crossing time shorter10

than its cooling time, then it accretes more mass, in gas and particles, from its higher pressure11

surroundings. Numerical integration of the linearized perturbation equations demonstrates12

that this radiation-condensation instability can create particle clumps and voids out of a13

secularly cooling gas. Provided radiation can escape to cool particle overdensities, thermal14

instability can help assemble chondrite parent bodies out of the vaporized debris of asteroid15

collisions, and form planetesimals generally.16

1. INTRODUCTION17

Condensation fronts, where gas condenses into liquid or solid particles, appear in many contexts. In18

planetary atmospheres, clouds condense out of water vapor (Earth), sulfuric acid (Venus), carbon dioxide19

(Mars), ammonia (Jupiter), methane (Uranus), and silicates and iron (brown dwarfs and hot Jupiters; for a20

introduction to the microphysics of clouds, see Pruppacher & Klett 2010). Water vapor and CO freeze out21

where molecular clouds and protoplanetary disks are sufficiently cold (“snowlines”; Qi et al. 2013; Cieza22

et al. 2016). Dust of diverse mineralogies condenses from the outflows of evolved stars (Tielens 2022) and23

catastrophically evaporating rocky planets (Bromley & Chiang 2023).24

Collisions between solid bodies are another source of vapor condensates. Meteor impacts have showered25

the lunar and terrestrial landscapes with silicate spherules condensed from impact vapor plumes (Johnson26

& Melosh 2012a,b, 2014). Of particular interest here are CB/CH chondritic meteorites which are nearly27

completely filled with mm-sized, once-liquid metal nodules and silicate chondrules. These melt droplets28

are thought to be condensed from vaporizing collisions of differentiated asteroids (Choksi et al. 2021, and29

references therein; see also Stewart et al. 2025). Impact plumes from colliding rocky bodies are special30

because they present a nearly wholly condensible medium of hot rock and metal vapor, undiluted by inert,31

non-condensible gases like hydrogen.32

How do fresh melt droplets from an explosion agglomerate into CB/CH chondrite parent bodies? The33

droplets must have been re-collected promptly and efficiently to explain their nearly 100% volume-filling34
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fractions. A proposed solution to the “Humpty-Dumpty” problem is a radiation-condensation instability35

(Chiang 2024). The idea is that in a saturated vapor, regions overdense in particle condensates radiatively36

cool relative to their surroundings, losing pressure and collapsing into smaller volumes. The plume may37

fragment into cool, dense clumps of particles surrounded by hot, rarefied vapor, analogous to how thermal38

instability fragments the interstellar medium into multiple phases (Field 1965; Jennings & Li 2021, and39

references therein). Chiang (2024) investigated potential nonlinear outcomes in a saturated cloud of silicate40

vapor by modeling collapsing regions as cavitating bubbles.41

We seek here to place the hypothesized radiation-condensation instability on firmer ground by seeing42

if and how it emerges from a linear stability analysis. We consider an initially uniform density medium43

composed of a wholly condensible, saturated gas and its entrained particle condensates, and ask whether44

small disturbances to this fluid grow or damp. Working in the optically thin limit where radiation from45

particles is allowed to escape to infinity, we will indeed find fast-acting instabilities that grow particle46

overdensities. Our study is the linear counterpart to the nonlinear explorations of Chiang (2024).47

Stability analyses usually presume a background equilibrium state to perturb. In Section 2, to define48

such an equilibrium, we introduce an arbitrary and fixed source of background heating to balance radiative49

cooling from background particles. This equilibrium is perturbed to derive an analytic dispersion relation50

for Fourier modes. We work out modal growth rates, and physically interpret mode behaviors. The goal of51

this analytic section is to develop physical intuition for the radiation-condensation instability, in the hope52

that some of the behaviors uncovered will be robust against our use of an artificial heating term in the energy53

equation.54

Section 3 solves the linear perturbation equations numerically. After validating our integrator by repro-55

ducing our analytic eigenmodes, we conduct experiments that remove the restrictions of our analytic study56

— in particular, we eliminate background heating and allow the medium to secularly cool by radiation. This57

time-dependent background is more physically realistic, as secular cooling better describes the evolution of58

a collisional plume, or the fluid downstream of a shock front. On top of this time-dependent background we59

introduce linear perturbations and study their growth.60

Section 4 summarizes and places the radiation-condensation instability in the context of Field’s (1965)61

thermal instability.62

2. LINEAR STABILITY ANALYSIS OF A FIXED BACKGROUND63

We assess the linear stability of a gas-particle mixture, where the two species inter-convert through phase64

changes, and the particles radiate freely to space. We carry out the usual analytic procedure of Fourier65

analyzing perturbations to a background state. Fourier analysis and the derivation of a wave dispersion66

relation require that the perturbations vary smoothly in space and time, and that the background be in a time-67

independent equilibrium (so that the linear algebraic perturbation equations used to derive the dispersion68

relation have constant coefficients). As mentioned in §1, to construct such an equilibrium, we will need to69

introduce a background heating term into the energy equation, to balance radiative losses from background70

particles. This artifice enables us to analytically survey and explore a wide range of physical behaviors,71

some of which will hopefully still manifest in more realistic set-ups without background heating. We will72

comment on which effects may be robust and which effects may not be (see §2.5.1 and §2.5.2), and test our73

assertions against numerical experiments in §3.74

The equations governing our fluid mixture are introduced in their most basic form in §2.1. The background75

equilibrium state is described in §2.2. Linear perturbation equations are derived in §2.3, and solved for76

eigenfrequencies in §2.4 and eigenmodes in §2.5.77
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2.1. Mass, momentum, and energy equations78

Consider a condensible gas mixed with its liquid or solid particle condensates, of total mass density79

𝜌tot = 𝜌gas + 𝜌par, for gas density 𝜌gas and particle density 𝜌par. We do not distinguish between solid and80

liquid phases for the particles. At the time of their formation, chondrules and metal nodules from CB81

chondrites were at least partially liquid while suspended in space, to attain their observed spherical shapes.82

Gas and particles are assumed to be in thermal and chemical equilibrium: on the pressure 𝑃 vs. temperature83

𝑇 phase diagram, the mixture is assumed to reside on the co-existence curve, such that the gas pressure is84

always given by the saturation vapor pressure85

𝑃 = 𝑃sat(𝑇) . (1)86

For molten “bulk silicate earth” having a composition similar to olivine-rich chondrites,87

log10

(
𝑃sat
bars

)
= −30.6757 − 8228.146 K

𝑇
+ 9.3974 log10

(
𝑇

K

)
(2)88

(Fegley & Schaefer 2012; for vapor pressures of other refractory materials, see Visscher & Fegley 2013;89

Perez-Becker & Chiang 2013). The vapor behaves as an ideal gas,90

𝑃 =
𝜌gas𝑘B𝑇

𝜇𝑚H
, (3)91

so its density also depends on 𝑇 only,92

𝜌gas = 𝜌sat(𝑇) =
𝜇𝑚H
𝑘B

𝑃sat(𝑇)
𝑇

(4)93

for Boltzmann constant 𝑘B, mean molecular weight 𝜇 ≃ 30, and atomic hydrogen mass 𝑚H.94

Gas and particles are assumed to be well-coupled dynamically (gas drag stopping times for particles are95

assumed short), so that the two species move at a common velocity v. The equations of mass and momentum96

evolution are given by97

𝐷𝜌tot
𝐷𝑡

= −𝜌tot∇ · v (5)98

𝐷𝜌gas

𝐷𝑡
=
𝑑𝜌sat
𝑑𝑇

𝐷𝑇

𝐷𝑡
(6)99

𝐷v
𝐷𝑡

= − 1
𝜌tot

∇𝑃 (7)100

where 𝐷/𝐷𝑡 ≡ 𝜕/𝜕𝑡 + (v · ∇) is the Lagrangian derivative.101

Equation (5) is the usual one for mass continuity; the total density of a fluid parcel (of fixed total mass)102

changes only by changing the parcel’s volume, via the velocity divergence ∇ · v. The velocity divergence103

is absent from the gas continuity equation (6) because we have assumed 𝜌gas = 𝜌sat(𝑇); the saturated gas104

density of a fluid parcel can only change from temperature changes, and not from volume changes per se. It105

follows that the particle density of a parcel can change from various effects:106

𝐷𝜌par

𝐷𝑡
=

𝐷𝜌tot
𝐷𝑡

−
𝐷𝜌gas

𝐷𝑡
= −𝜌tot∇ · v − 𝑑𝜌sat

𝑑𝑇

𝐷𝑇

𝐷𝑡
107
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= −𝜌par∇ · v − 𝜌gas∇ · v − 𝑑𝜌sat
𝑑𝑇

𝐷𝑇

𝐷𝑡
. (8)108

The first term on the right-hand side of (8) describes how the particle density changes from parcel volume109

changes at fixed particle mass (no phase changes). The second term describe how gas and particles can110

inter-convert from parcel volume changes at fixed temperature. The same phenomenon is evident in a111

piston enclosing vapor and liquid in equilibrium; at fixed temperature, lowering the piston to shrink the112

enclosed volume converts vapor to liquid while keeping the vapor density and pressure constant (see any113

thermodynamics textbook; e.g., Figure 10.1 of Kittel & Kroemer 1980). The third term accounts for phase114

changes from temperature changes.115

The momentum eq. (7) describes how the fluid accelerates from gas pressure, with the inertia given by 𝜌tot116

for our assumed well-coupled particle-gas mixture. Though the fluid may be orbiting a star, rotational forces117

and orbital shear are negligible as long as we focus on processes than unfold over timescales much shorter118

than an orbital period (the timescale over which Coriolis and stellar tidal forces act). Petrologic experiments119

constrain chondrules to cool over timescales of hours to days (e.g. Desch & Connolly 2002; Hewins et al.120

2018), much less than a heliocentric orbital period at the location of the asteroid belt.121

The last equation needed to close the system is the energy equation:122

𝜌tot𝐶
𝐷𝑇

𝐷𝑡
= −𝑃∇ · v + 𝐿vap

(
−𝜌gas∇ · v − 𝑑𝜌sat

𝑑𝑇

𝐷𝑇

𝐷𝑡

)
− 4𝜎𝑇4𝜌par𝜅par + H (9)123

where 𝐶 ≃ 3𝑘B/(𝜇𝑚H) ≃ 8 × 106 erg/g/K is the specific heat of the particle-gas mixture (neglecting the124

order-unity difference between particle and gas specific heats), 𝐿vap ≃ 3 × 1010 erg/g is the latent heat of125

vaporization, 𝜎 is the Stefan-Boltzmann constant, and 𝜅par is a grey opacity (emissive cross-section per unit126

particle mass) which depends on the particle size distribution. We adopt, for a single particle size 𝑠 = 0.1127

cm and internal particle density 𝜌p ≃ 3 g/cm3, a fiducial 𝜅par = 𝜋𝑠2/(4𝜋𝜌p𝑠
3/3) = 2.5 cm2/g.128

From left to right on the right-hand side of the energy eq. (9), the temperature of a parcel can change from:129

(i) 𝑃𝑑𝑉 work130

(ii) latent heat release from condensation; the parentheses enclose only those terms in 𝐷𝜌par/𝐷𝑡 that131

involve phase changes (thus the first term on the right-hand side of eq. 8 does not qualify)132

(iii) energy loss from radiation, modeled by assigning to particles a blackbody volume emissivity 𝑗𝜈 =133

𝐵𝜈𝜌par𝜅par for Planck source function 𝐵𝜈. Self-absorption is ignored — the background is assumed134

optically thin, so that all radiation escapes to infinity. Accordingly, the background must be of finite size,135

limiting our analysis to perturbations of smaller length scale. The factor of 4 arises from integrating136

the Planck function first over frequency 𝜈 (yielding 𝜎𝑇4/𝜋) and then over all solid angle (yielding 4𝜋).137

(iv) a constant heating term H , introduced to balance radiation losses and formally define a background138

equilibrium.139

2.2. Background equilibrium state140

A heating term H > 0 is needed to define a background equilibrium temperature 𝑇0 =141

[H/(4𝜎𝜌par,0𝜅par)]1/4 > 0. In all our calculations below, we take 𝑇0 = 2300 K as a fiducial. The142

background equilibrium state (subscript 0) is spatially uniform (𝑇0 = constant, 𝑃0 = 𝑃sat(𝑇0) = constant,143

𝜌gas,0 = 𝜌sat(𝑇0) = constant, 𝜌par,0 = constant) and motionless (v0 = 0). Over the course of this paper, we144

will experiment with different values for 𝜌par,0, ranging from zero to 0.1𝜌gas,0.145
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2.3. Linear perturbation equations146

We now introduce perturbations in the form of one-dimensional plane-parallel waves. For example, for147

pressure, 𝑃 = 𝑃0 + 𝛿𝑃 exp 𝑖(𝑘𝑥 − 𝜔𝑡), where 𝛿𝑃 is the complex wave amplitude (of magnitude |𝛿𝑃 | ≪ 𝑃0),148

𝑘 is the real wavenumber (of magnitude 2𝜋 divided by the wavelength), 𝑥 is one-dimensional position,149

and 𝜔 is the complex wave frequency. The complex exponential form of the perturbation is introduced for150

mathematical convenience; the physical content is contained in the real part of 𝑃. If the imaginary part of151

𝜔 is positive (Im(𝜔) > 0), then the wave amplifies exponentially in time, i.e. the fluid is unstable.152

We substitute 𝑃 = 𝑃0 + 𝛿𝑃 exp 𝑖(𝑘𝑥 −𝜔𝑡), 𝑇 = 𝑇0 + 𝛿𝑇 exp 𝑖(𝑘𝑥 −𝜔𝑡), v = 𝑣0x̂ + 𝛿𝑣x̂ exp 𝑖(𝑘𝑥 −𝜔𝑡), etc.,153

into the evolutionary equations (3, 5, 6, 7, and 9; the condition of saturation equilibrium has been folded into154

equations 6 and 9). After subtracting off the zeroth-order background terms (including the assumed constant155

H ), and keeping only terms linear in perturbed quantities, we arrive at a homogeneous set of algebraic156

relations (subscript 0 dropped for convenience):157

−𝑖𝜔 𝛿𝜌tot = − 𝑖𝑘 𝜌tot 𝛿𝑣 (10)158

−𝑖𝜔 𝛿𝜌gas = − 𝑖𝜔
𝑑𝜌sat
𝑑𝑇

𝛿𝑇 (11)159

−𝑖𝜔 𝛿𝑣 = − 𝑖𝑘

𝜌tot
𝛿𝑃 (12)160

−𝑖𝜔𝜌tot𝐶 𝛿𝑇 = − 𝑖𝑘𝑃 𝛿𝑣 − 𝑖𝑘 𝜌gas𝐿vap 𝛿𝑣 + 𝑖𝜔𝐿vap
𝑑𝜌sat
𝑑𝑇

𝛿𝑇 − 4𝜎𝑇4𝜅par 𝛿𝜌par161

− 16𝜎𝑇3𝜌par𝜅par 𝛿𝑇 (13)162

𝛿𝑃

𝑃
=
𝛿𝜌gas

𝜌gas
+ 𝛿𝑇

𝑇
. (14)163

Note in (13) we have not assumed |𝛿𝜌par |/𝜌par ≪ 1; only the background terms have been subtracted, and164

|𝛿𝑇 |/𝑇 ≪ 1 assumed to keep terms linear in 𝛿𝑇 . We will be interested in the case where the background165

is nearly all gas (𝜌tot ≃ 𝜌gas ≫ 𝜌par), in which case 𝜌par may be so small that |𝛿𝑇 |/𝑇 ≪ |𝛿𝜌par |/𝜌par.166

Accordingly, for simplicity, we drop the last term of (13) relative to the second-to-last term:167

−𝑖𝜔
(
𝜌tot𝐶 + 𝐿vap

𝑑𝜌sat
𝑑𝑇

)
𝛿𝑇 = −𝑖𝑘

(
𝑃 + 𝜌gas𝐿vap

)
𝛿𝑣 − 4𝜎𝑇4𝜅par

(
𝛿𝜌tot − 𝛿𝜌gas

)
(13a)168

where (𝛿𝜌tot − 𝛿𝜌gas) = 𝛿𝜌par. The dropped term −16𝜎𝑇3𝜌par𝜅par𝛿𝑇 will be restored in the more accurate169

numerical experiments of §3.170

To re-cap the small parameters: |𝛿𝑇 |/𝑇 , |𝛿𝑃 |/𝑃, |𝛿𝜌gas |/𝜌gas ≪ 1. We have not assumed |𝛿𝜌par | ≪ 𝜌par171

or |𝛿𝑣 | ≪ 𝑣 (the background 𝑣 = 0). There are further restrictions from mass conservation. Since172

𝜌par + 𝛿𝜌par ≥ 0 and 𝜌gas + 𝛿𝜌gas ≥ 0 (no negative masses), the perturbation densities have “floors”:173

𝛿𝜌par ≥ −𝜌par (15a)174

𝛿𝜌gas ≥ −𝜌gas . (15b)175

Furthermore, the contribution to 𝛿𝜌par from phase changes alone (i.e. not counting the contribution from176

particle transport) must be ≤ 𝜌gas, as one cannot condense more than what is available in background gas.177

Likewise 𝛿𝜌gas from phase changes alone must be ≤ 𝜌par. Thus there are also “ceilings”:178
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𝛿𝜌par, phase change only ≤ 𝜌gas (16a)179

𝛿𝜌gas, phase change only ≤ 𝜌par . (16b)180

Analytically (this section 2), perturbations 𝛿𝜌par and 𝛿𝜌gas may always be scaled small enough to stay safely181

within the bounds (15)–(16), as required by Fourier analysis (where all derivatives are continuous). In our182

numerical experiments (§3), we will occasionally and by design hit up against the bounds, and enforce them183

manually.184

In matrix form, our simplified linear perturbation equations are:185 

𝜔 0 −𝑘𝜌tot 0 0
0 𝜔 0 −𝜔(𝑑𝜌sat/𝑑𝑇) 0
0 0 𝜔 0 −(𝑘/𝜌tot)

4𝜎𝑇4𝜅par −4𝜎𝑇4𝜅par 𝑖𝑘 (𝑃 + 𝜌gas𝐿vap) −𝑖𝜔
[
𝜌tot𝐶 + 𝐿vap(𝑑𝜌sat/𝑑𝑇)

]
0

0 −1/𝜌gas 0 −1/𝑇 1/𝑃





𝛿𝜌tot

𝛿𝜌gas

𝛿𝑣

𝛿𝑇

𝛿𝑃


= 0. (17)186

2.4. Dispersion relation and eigenfrequencies187

Setting the determinant of the 5×5 matrix in (17) equal to 0 gives the dispersion relation:188

(1 + ℓ𝑎) 𝜔3 − 𝑖𝑎𝜔T 𝜔
2 − (1 + 𝑎) (𝑏 + ℓ)𝑐2𝑘2 𝜔 + 𝑖(1 + 𝑎)𝜔T𝑐

2𝑘2 = 0 (18)189

where we have defined a frequency190

𝜔𝑇 ≡
4𝜎𝑇4𝜅par

𝐶𝑇
≃ 0.8

(
𝑇

2300 K

)3 ( 𝜅par

2.5 cm2/g

)
s−1 , (19)191

an isothermal sound speed192

𝑐 ≡
√︁
𝑃/𝜌 ≃ 0.8

(
𝑇

2300 K

)1/2
km/s , (20)193

and dimensionless constants194

𝑎 ≡ 𝑑 ln 𝜌sat
𝑑 ln𝑇

=
8228.146 K
𝑇 log10 𝑒

− 1 + 9.3974 ≃ 16.6 (21)195

𝑏 ≡ 𝑃

𝜌𝐶𝑇
≃ 0.3 (22)196

ℓ ≡
𝐿vap

𝐶𝑇
≃ 1.6 (23)197

all while assuming the background particle density is small compared to the background gas density198

𝜌par ≪ 𝜌gas = 𝜌sat = 𝜌tot ≡ 𝜌 . (24)199

Figure 1 shows the eigenfrequency solutions of the cubic (18) solved numerically. All modes are unstable,200

growing exponentially in time. In the following subsections we analytically sketch eigenfrequencies and201

eigenmodes in various limits to develop physical intuition.202
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Figure 1. Eigenmode frequencies (colored curves), obtained by numerical solution of the simplified dispersion relation
(18), evaluated for fiducial parameters 𝑇 = 2300 K and 𝜅par = 2.5 cm2/g. Mode 1 is “stationary” [Re (𝜔1) = 0],
while modes 2 and 3 are sound waves traveling in opposite directions at approximately speed 𝑐 ≡

√︁
𝑃/𝜌 ≃ 0.8 km/s.

All three modes grow with time [Im (𝜔) > 0]. The dotted vertical line marks 𝑘L = 𝜔𝐿/𝑐 dividing low-𝑘 and high-𝑘
regimes. Dashed black lines show analytic asymptotic results in those two regimes (eqs. 28, 30, and 31). Agreement
with the numerical results is excellent; the analytic curves for modes 2 and 3 in the bottom panel are offset vertically
from the numerical curves for clarity.
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2.4.1. Stationary mode growth rates203

The alternating real and imaginary coefficients of the cubic (18) imply that a root with Re(𝜔) = 0 and204

Im(𝜔) > 0 — a “stationary” (zero phase speed) growing mode — is possible. We can estimate this purely205

imaginary root in high-𝑘 and low-𝑘 limits. Dividing (18) by (1 + ℓ𝑎), and grouping terms to highlight206

stationary-mode behavior, we have207

𝜔2(𝜔 − 𝑖𝜔𝐿) − 𝑐2𝑘2
(
Γ𝜔 − 𝑖

1 + 𝑎

𝑎
𝜔𝐿

)
= 0 (25)208

where209

𝜔𝐿 ≡ 𝑎𝜔𝑇

1 + ℓ𝑎
≃

4𝜎𝑇4𝜅par

𝐿vap
≃ 0.5

(
𝑇

2300 K

)4 ( 𝜅par

2.5 cm2/g

)
s−1 (26)210

and211

Γ ≡ (1 + 𝑎) (𝑏 + ℓ)
1 + ℓ𝑎

≃ 1.2. (27)212

For 𝑘 → 0, we can ignore the 𝑐2𝑘2 term of (25), finding 𝜔 = +𝑖𝜔𝐿 . For 𝑘 → ∞, we keep only the 𝑐2𝑘2
213

term, and find nearly the same result, 𝜔 = +𝑖𝜔𝐿 (1 + 𝑎)/(Γ𝑎). We see that 𝑐𝑘L ≃ 𝜔𝐿 divides the low-𝑘 and214

high-𝑘 limits. To summarize,215

𝜔1 ≈

+𝑖𝜔𝐿 𝑘 ≪ 𝜔𝐿/𝑐
+𝑖𝜔𝐿 (1 + 𝑎)/(Γ𝑎) 𝑘 ≫ 𝜔𝐿/𝑐 .

(28)216

Mode 1 is stationary and growing for all 𝑘 . Equation (28) is verified by the full numerical solution of (25), as217

shown in Figure 1. We recognize mode 1 as the radiation-condensation instability hypothesized by Chiang218

(2024). It amplifies over the rate at which latent heat radiates away: 𝜔𝐿 ≃ 𝜔𝑇/ℓ = 4𝜎𝑇4𝜅par/𝐿vap.219

2.4.2. Acoustic mode frequencies and growth rates220

To find the other two roots of the cubic (18), we re-group terms again, this time highlighting (non-stationary)221

sound-wave behavior:222

𝜔(𝜔2 − Γ𝑐2𝑘2) − 𝑖𝜔𝐿

(
𝜔2 − 1 + 𝑎

𝑎
𝑐2𝑘2

)
= 0. (29)223

We write 𝜔 = 𝜔Re + 𝑖𝜔Im, where the real part 𝜔Re = O(±𝑐𝑘) and the imaginary part |𝜔Im | ≪ 𝑐𝑘 . In224

the high-𝑘 limit 𝜔𝐿 ≪ 𝑐𝑘 , (29) is dominated by the first term and gives 𝜔Re ≃ ±
√
Γ𝑐𝑘 . Now insert225

𝜔 = ±
√
Γ𝑐𝑘 + 𝑖𝜔Im back into (29), dropping 𝜔2

Im and 𝜔Im𝜔𝐿 terms to solve for 𝜔Im to leading order. We226

find227

𝜔2,3 ≃ ±
√
Γ𝑐𝑘 + 𝑖𝜔𝐿 (Γ − 1 − 1/𝑎)/(2Γ) 𝑘 ≫ 𝜔𝐿/𝑐 . (30)228

In this high-𝑘 limit, modes 2 and 3 are adiabatic sound waves (with adiabatic index Γ) that grow at rate229

∼0.06𝜔𝐿 . The high-𝑘 growth rate is independent of 𝑘 , and slower than for the stationary mode.230

We now work in the 𝑐𝑘 ≪ 𝜔𝐿 limit. The cubic (29) is then dominated by the 𝑖𝜔𝐿 term, which yields231

𝜔 ≃ ±[(1 + 𝑎)/𝑎]1/2𝑐𝑘 . We insert 𝜔 ≃ ±(1 + 1/𝑎)1/2𝑐𝑘 + 𝑖𝜔Im into (29), dropping terms of order 𝜔2
Im and232
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𝑐2𝑘2 ≪ 𝑐𝑘𝜔𝐿 to solve for 𝜔Im to leading order. We find233

𝜔2,3 ≃ ±(1 + 1/𝑎)1/2𝑐𝑘 + 𝑖(Γ − 1 − 1/𝑎)
2

𝑐2𝑘2

𝜔𝐿

𝑘 ≪ 𝜔𝐿/𝑐 . (31)234

In this low-𝑘 limit, modes 2 and 3 are nearly isothermal sound waves that grow at rates that decrease with235

decreasing 𝑘 . The low-𝑘 and high-𝑘 frequency behaviors for acoustic modes 2 and 3 are confirmed in Figure236

1.237

2.5. Eigenvectors and work integrals238

To better understand the physical behaviors of the modes, we solve for the eigenvectors. We insert239

𝜔 = 𝜔Re + 𝑖𝜔Im into the matrix equation (17), and non-dimensionalize the state vector:240 

𝜌(𝜔Re + 𝑖𝜔Im) 0 −𝜌𝑐𝑘 0 0
0 𝜌(𝜔Re + 𝑖𝜔Im) 0 −𝑎𝜌(𝜔Re + 𝑖𝜔Im) 0
0 0 𝑐(𝜔Re + 𝑖𝜔Im) 0 −𝑐2𝑘

. . . . . . . . . . . . . . .

0 −1 0 −1 1





𝛿𝜌tot/𝜌
𝛿𝜌gas/𝜌
𝛿𝑣/𝑐
𝛿𝑇/𝑇
𝛿𝑃/𝑃


= 0 (32)241

where we replaced 𝜌gas ≃ 𝜌tot (background is nearly particle-free) with 𝜌, and omitted specifying the 4th242

row of the square matrix because the remaining four rows suffice to solve for the eigenvector.243

2.5.1. Stationary eigenmode behavior244

Stationary mode 1 has 𝜔Re = 0, 𝜔Im = 𝜔𝐿 at low 𝑘 , and 𝜔Im = 𝜔𝐿 (1 + 𝑎)/(Γ𝑎) at high 𝑘 . Without loss245

of generality we scale all eigenvector components to 𝛿𝑇/𝑇 , and solve the equations in the 2nd, 5th, 3rd, and246

1st rows of (32), in that order, to find the stationary mode eigenvector247

E1 =



𝛿𝜌tot/𝜌
𝛿𝜌gas/𝜌
𝛿𝑣/𝑐
𝛿𝑇/𝑇
𝛿𝑃/𝑃


=



−(𝑐𝑘/𝜔Im)2(1 + 𝑎)
𝑎

−𝑖(𝑐𝑘/𝜔Im) (1 + 𝑎)
1

1 + 𝑎


𝛿𝑇/𝑇 . (33)248

Pressure, gas density, and temperature fluctuations are all in phase with each other, with 𝛿𝑃 and 𝛿𝜌gas of249

higher fractional amplitude than 𝛿𝑇 (by about a factor of 𝑎 ≃ 17) because of the exponential dependence of250

𝑃sat and 𝜌sat on 𝑇 . Velocity fluctuations 𝛿𝑣 run ahead of pressure fluctuations 𝛿𝑃 by a phase difference of251

90◦. At low 𝑘 , |𝛿𝑣/𝑐 | < |𝛿𝑃/𝑃 |, and at high 𝑘 , |𝛿𝑣/𝑐 | > |𝛿𝑃/𝑃 |. The particle density variation252

𝛿𝜌par

𝜌
=
𝛿𝜌tot − 𝛿𝜌gas

𝜌
=

[
−
(
𝑐𝑘

𝜔Im

)2 1 + 𝑎

𝑎
− 1

]
𝛿𝜌gas

𝜌
(34)253

is 180◦ out of phase with the gas density variation, with |𝛿𝜌par | = |𝛿𝜌gas | at low 𝑘 , and |𝛿𝜌par | > |𝛿𝜌gas | at254

high 𝑘 .255

Scaled pictures of the stationary eigenmode are shown in Figures 2, 3, and 4. Throughout this paper, we256
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Figure 2. Eigenvector components of stationary mode 1 (having zero phase velocity; top panels), and of mode 2
which is a sound wave traveling in the positive 𝑥 direction (bottom panels). Modes are sampled at high 𝑘 (left) and
low 𝑘 (right; note the change in 𝑥-scale) relative to 𝑘L = 𝜔𝐿/𝑐 ≃ 0.6 km−1 (wavelength 2𝜋/𝑘L ≃ 10 km). In every
panel, the perturbation temperature 𝛿𝑇/𝑇 (blue curve) is assigned the same arbitrary amplitude and phase; amplitudes
and phases of other perturbed quantities follow from the eigenmode, obtained by numerical solution of (32). Note the
annotated numerical coefficients, introduced so that all curves fit in a given panel. The stationary mode at high 𝑘 (top
left) has especially large velocities that concentrate particles especially strongly.
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initialize the perturbation temperature to257

𝛿𝑇

𝑇

����
𝑡=0

= A · 10−6 sin 𝑘𝑥 (35)258

where A is an arbitrary normalization constant, introduced for bookkeeping. Because our entire study is259

in the linear regime (including the numerical experiments of §3), all perturbation quantities scale with A,260

at least initially. For ease of comparison between different calculations, we set A = 1 unless indicated261

otherwise.262

In the low-𝑘 limit (Figs. 2 and 4), fluid velocities 𝛿𝑣 and variations in total density 𝛿𝜌tot are negligible.263

Cold and hot regions cool down and heat up independently, on timescale 𝜔−1
𝐿

, before they can communicate264

by pressure disturbances which travel at speed 𝑐. Cold regions get colder because they condense more265

particles, which radiate more and cool the fluid more, in a positive feedback loop. Likewise hot regions get266

hotter because they have increasingly fewer particles. Changes in the local particle-to-gas ratio occur simply267

from local condensation and evaporation (𝛿𝜌par ≃ −𝛿𝜌gas).268

By contrast, in the 𝑐𝑘 ≫ 𝜔𝐿 limit (Figs. 2 and 3), hot and cold regions can communicate, and mass269

is transported between them. Most of the changes in total density are from the particle density changing270

(|𝛿𝜌par | ≫ |𝛿𝜌gas |; eq. 34), as particles are transported out of high-pressure hot regions into low-pressure271

cold regions. Gas transports these particles, but gas densities do not rise in tandem with particle densities,272

because the gas density is throttled by saturation equilibrium; whatever gas moves with the particles into cold273

regions condenses into particles. In this short-wavelength limit, we have a material instability that collects274

increasing numbers of particles into colder, overdense clumps by excavating mass out of hotter voids.275

How much of the stationary mode’s behavior depends on our use of an artificial heating term H? The276

heating of hot, particle-poor (𝛿𝜌par < 0) regions to temperatures above the background does depend on277

H > 0 — on the right-hand side of the energy equation (9), heat exchange between the fluid and infinity278

arises from the net difference279

Q ≡ H − 4𝜎𝑇4𝜅par𝜌par (36)280

which is positive for 𝛿𝜌par < 0. Conversely, in cold, particle-rich regions (𝛿𝜌par > 0), the difference Q < 0.281

But Q can be still be negative in such regions if H = 0; cold, particle-rich regions would still get colder282

relative to their surroundings by having more particles to emit more radiation. We are therefore led to believe283

that a growing mode similar to (but not identical to) the one we have found should exist when H = 0, driven284

by runaway cooling and condensation. We will test this assertion in §3.285

2.5.2. Acoustic eigenmode behavior286

At high 𝑘 , 𝜔Re = ±
√
Γ𝑐𝑘 and 𝜔Im = (Γ − 1 − 1/𝑎)𝜔𝐿/(2Γ) ≪ 𝑐𝑘 . We follow the same procedure as287

above to solve (32) for the eigenvector:288

𝑐𝑘 ≫ 𝜔𝐿 : E2,3 =



𝛿𝜌tot/𝜌
𝛿𝜌gas/𝜌
𝛿𝑣/𝑐
𝛿𝑇/𝑇
𝛿𝑃/𝑃


=



[(1 + 𝑎)/Γ]
[
1 ∓ 𝑖(Γ − 1 − 1/𝑎)Γ−3/2𝜔𝐿/(𝑐𝑘)

]
𝑎

±[(1 + 𝑎)/
√
Γ]

[
1 ∓ (𝑖/2) (Γ − 1 − 1/𝑎)Γ−3/2𝜔𝐿/(𝑐𝑘)

]
1

1 + 𝑎


𝛿𝑇/𝑇 . (37)289
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Figure 3. Time evolution of stationary mode 1 at high 𝑘 > 𝜔𝐿/𝑐, solved numerically using our staggered leapfrog
integrator (thin solid curves, §3.1), and overlaid with analytic solutions (thick dashed curves, §2.5.1) obtained by
multiplying initial values by 𝑒−𝑖𝜔1𝑡 . Because the calculation is linear, all variables scale with a universal arbitrary
constantA as defined in (35) and chosen here to be 1. The relative magnitudes of variables (e.g. 𝛿𝜌par/𝜌tot vs. 𝛿𝜌gas/𝜌tot)
are fully determined. Note how |𝛿𝜌par | ≫ |𝛿𝜌gas |; the mode has short enough wavelength that mass can move between
hot and cold regions within a condensation time 𝜔−1

𝐿
, increasing particle-to-gas ratios above what a purely condensing,

static medium would yield (see Fig. 4 for an approximation of the latter). The numerical solution adopts a background
particle-to-gas ratio 𝜌par/𝜌gas = 0.1, and deviates from the analytic which is computed in the limit 𝜌par/𝜌gas ≪ 1. For
better agreement, we could reduce the background 𝜌par in the numerical solution, except that 𝛿𝜌par grows so negative
for this mode that it threatens to violate mass conservation, which requires 𝜌par + 𝛿𝜌par ≥ 0.
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Figure 4. Same as Fig. 3, except for the stationary mode at low 𝑘 . The mode has too long a wavelength for pressure
gradients to transport much mass over the cooling time, and therefore gas mostly condenses without moving, with
𝛿𝜌par ≃ −𝛿𝜌gas. As in Fig. 3, the numerical solution adopts a background particle-to-gas ratio 𝜌par/𝜌gas = 0.1, whereas
the analytic curves are computed in the limit 𝜌par/𝜌gas ≪ 1.
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Figure 5. Time evolution of mode 2 (sound wave propagating in the positive 𝑥 direction) at high 𝑘 , with numerical
(thin solid, §3.1) and analytic (thick dashed, §2.5.2) solutions overplotted. Mode 2 grows more slowly than mode 1;
compare with Fig. 3, and note different timestamps. The numerical solution adopts a background particle-to-gas ratio
𝜌par/𝜌gas = 10−5, and the analytic curves are computed in the limit 𝜌par/𝜌gas ≪ 1.
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The mode behaves like an adiabatic sound wave whose growth can be understood via the work integral (e.g.290

Buchler & Regev 1982):291

+
∮

𝑃𝑑𝑉 ∝ −
∮

𝑃 𝑑𝜌tot

𝜌2
tot

∝ −
∮

𝛿𝑃
𝜕𝛿𝜌tot
𝜕𝑡

𝑑𝑡 (38)292

which measures, over one wave period, the work done by a fluid parcel of unit mass to increase the mode293

kinetic energy, where the parcel volume 𝑉 ∝ 1/𝜌tot, 𝑃 = 𝑃0 + 𝛿𝑃, and 𝜌tot = 𝜌tot,0 + 𝛿𝜌tot.1 If
∮
𝑃𝑑𝑉 > 0,294

the mode increases in kinetic energy, i.e., the wave amplifies. Suppose 𝛿𝑃 ∝ cos(𝑘𝑥−𝜔Re𝑡); then from (37),295

𝛿𝜌tot ∝ cos(𝑘𝑥−𝜔Re𝑡∓𝜀) where 𝜀 ∼ 𝜔𝐿/(𝑐𝑘) ≪ 1 is a phase lag. Then 𝜕𝛿𝜌tot/𝜕𝑡 ∝ 𝜔Re sin(𝑘𝑥−𝜔Re𝑡∓𝜀) ∝296

±𝑘 sin(𝑘𝑥 − 𝜔Re𝑡 ∓ 𝜀), and from (38) the work integral
∮
𝑃𝑑𝑉 ∝ 𝑘 sin 𝜀 ∝ 𝜔𝐿 > 0. Thus independent of 𝑘297

in this high-𝑘 limit, and regardless of the wave direction, the wave gains energy.298

In more physical detail, for an oscillatory mode to gain energy every cycle period, there must be a phase299

lag 𝜀 such that when a fluid parcel attains an extremum in pressure (either max 𝛿𝑃 > 0 or min 𝛿𝑃 < 0),300

its volume is still changing (either expanding 𝜕𝛿𝜌tot/𝜕𝑡 < 0 for 𝛿𝑃 > 0, or contracting 𝜕𝛿𝜌tot/𝜕𝑡 > 0 for301

𝛿𝑃 < 0). In this way positive contributions are made to the work integral (38). How does this phase lag302

between pressure and volume arise for our system? According to the energy eq. (9),303 (
𝑃 + 𝜌gas𝐿vap

)
∇ · v = H − 4𝜎𝑇4𝜅par𝜌par ≡ Q at max or min 𝛿𝑃 , (39)304

since 𝐷𝑇/𝐷𝑡 = 0 when pressure reaches an extremum (pressure and temperature are always in phase on305

the co-existence curve; see any of the eigenvectors). We see that at max 𝛿𝑃, the energy to drive volume306

expansion (∇ · v > 0) can come from decreasing the particle density 𝜌par, so that the background heating307

term H exceeds radiative cooling (Q > 0). Indeed, for the high-𝑘 acoustic mode, the perturbed particle308

density309

𝛿𝜌par

𝜌
=
𝛿𝜌tot − 𝛿𝜌gas

𝜌
=

[
(1 − Γ)𝑎 + 1

Γ
∓ 𝑖

(Γ − 1 − 1/𝑎) (1 + 𝑎)
Γ5/2

𝜔𝐿

𝑐𝑘

]
𝛿𝑇

𝑇
(𝑐𝑘 ≫ 𝜔𝐿) (40)310

is < 0 at max 𝛿𝑇 (in the square brackets above, the real part dominates and is < 0 for our fiducial Γ ≃ 1.2 and311

𝑎 ≃ 17). To leading order, particles evaporate as the fluid gets hotter under compression, and the consequent312

reduction in radiative cooling allows H to energize the mode at the moment of maximum pressure.313

The same energy boost occurs at min 𝛿𝑃 < 0, but for the opposite reason; now Q < 0 because there are314

more particles, causing radiative losses to dominate and the parcel to shrink (∇ · v < 0). This cooling phase315

of the work cycle can occur even if H = 0. In principle, from (39), all that is needed for a parcel to contract316

relative to its surroundings is for it to have more particles, which radiate more. Thus we argue that acoustic317

modes in a medium without background heating can still destabilize, not because they pick up more energy318

during the high-pressure phase of their cycle, but because they lose more energy during the low-pressure319

phase.320

In the low-𝑘 limit, waves are quickly cooled by radiation and behave nearly isothermally:321

1 The work integral over one wave cycle cannot be evaluated for the stationary mode which has no period. Still, it is evident from (33)
that a given fluid parcel in the stationary mode continuously does positive work on its surroundings: +𝑃𝑑𝑉 ∝ −𝛿𝑃 𝜕 (𝛿𝜌tot)/𝜕𝑡 > 0,
whether the parcel is in a pressure peak or trough.
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𝑐𝑘 ≪ 𝜔𝐿 : E2,3 =



𝛿𝜌tot/𝜌
𝛿𝜌gas/𝜌
𝛿𝑣/𝑐
𝛿𝑇/𝑇
𝛿𝑃/𝑃


=



𝑎
[
1 ∓ 𝑖(Γ − 1 − 1/𝑎) (1 + 1/𝑎)−1/2𝑐𝑘/𝜔𝐿

]
𝑎

±
√︁
𝑎(1 + 𝑎)

[
1 ∓ (𝑖/2) (Γ − 1 − 1/𝑎) (1 + 1/𝑎)−1/2𝑐𝑘/𝜔𝐿

]
1

1 + 𝑎


𝛿𝑇/𝑇 .

(41)

322

The work integral now scales as −
∮
𝛿𝑃(𝜕𝛿𝜌tot/𝜕𝑡)𝑑𝑡 ∝ 𝑘 sin[(Γ− 1− 1/𝑎) (1+ 1/𝑎)−1/2𝑐𝑘/𝜔𝐿] ∝ 𝑘2 > 0,323

recovering the growth rate 𝜔Im ∝ 𝑘2. A rough description for how low-𝑘 waves amplify is that there are324

phase lags of order 𝜀 ∼ 𝑐𝑘/𝜔𝐿 between variables that increase the mode amplitude by a fractional amount325

𝜀 every wave period 1/(𝑐𝑘); then the wave 𝑒-folding time is [1/(𝑐𝑘)]/𝜀 ∼ 𝜔𝐿/(𝑐2𝑘2).326

According to the low-𝑘 eigenmode (41), 𝛿𝜌par = 𝛿𝜌tot − 𝛿𝜌gas = 0 when 𝛿𝑇 is maximized (𝛿𝜌par and 𝛿𝑇327

are exactly 𝜋/2 out of phase according to eq. 41). This is an asymptotic result. In reality, to explain how328

low-𝑘 waves grow, we should have 𝛿𝜌par < 0 (> 0) when 𝛿𝑇 is maximized (minimized). There must be a329

small difference between the real components of 𝛿𝜌tot and 𝛿𝜌gas that our asymptotic expressions in (41) do330

not capture.331

3. NUMERICAL EXPERIMENTS IN LINEAR STABILITY332

Here we solve the perturbation equations numerically, staying in the linear regime and in 1D, but allowing333

disturbances to deviate from sinusoids. The equations we solve are more primitive and general forms of the334

linearized perturbation equations in §2:335

𝜕𝛿𝜌tot
𝜕𝑡

= − 𝜌tot
𝜕𝛿𝑣

𝜕𝑥
(42)336

𝜕𝛿𝜌par

𝜕𝑡
= − 𝜌tot

𝜕𝛿𝑣

𝜕𝑥
− 𝑑𝜌sat

𝑑𝑇

𝜕𝛿𝑇

𝜕𝑡
− 𝑑2𝜌sat

𝑑𝑇2
𝑑𝑇

𝑑𝑡
𝛿𝑇 (43)337

𝛿𝜌gas = 𝛿𝜌tot − 𝛿𝜌par (44)338

𝜕𝛿𝑣

𝜕𝑡
= − 1

𝜌tot

𝜕𝛿𝑃

𝜕𝑥
(45)339

𝜌tot𝐶
𝜕𝛿𝑇

𝜕𝑡
= − 𝐶

𝑑𝑇

𝑑𝑡
𝛿𝜌tot − 𝑃

𝜕𝛿𝑣

𝜕𝑥
+ 𝐿vap

(
𝜕𝛿𝜌par

𝜕𝑡
+ 𝜌par

𝜕𝛿𝑣

𝜕𝑥

)
340

− 4𝜎𝑇4𝜅par 𝛿𝜌par − 16𝜎𝑇3𝜌par𝜅par 𝛿𝑇 (46)341

𝛿𝑃 =
𝑘B
𝜇𝑚H

(𝑇𝛿𝜌gas + 𝜌gas𝛿𝑇) . (47)342

The background velocity 𝑣 = 0, and the background total density 𝜌tot = constant. Other background343

quantities 𝜌par(𝑡), 𝜌gas(𝑡), 𝑃(𝑡), and 𝑇 (𝑡) are constant in space, and known (explicit) functions of time.344

While the constant background heating term H that we introduced in §2 does not appear explicitly in345

the above perturbation equations, the effects of H are implicit in the time evolution (or lack thereof) of346

background quantities. There are three cases of interest: (i) A fixed background where radiative cooling from347

background particles (𝜌par > 0) is balanced by background heating (H > 0; §2); (ii) A fixed background348

where there is neither background heating (H = 0) nor background cooling (𝜌par = 0); (iii) A time-varying349

background where H = 0 and 𝜌par > 0 — here 𝑇 will decrease secularly from unbalanced radiative cooling350
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(hence the 𝑑𝑇/𝑑𝑡 terms in eqs. 43 and 46). We will consider all three cases in §3.1, §3.2, and §3.3,351

respectively.352

As in §2, we take as small parameters |𝛿𝑇 |/𝑇 , |𝛿𝑃 |/𝑃, and |𝛿𝜌gas |/𝜌gas ≪ 1, but do not assume |𝛿𝜌par | ≪353

𝜌par. Unlike in §2 (cf. eqs. 13 and 13a), we retain the term −16𝜎𝑇3𝜌par𝜅par 𝛿𝑇 in the energy equation (46)354

for greater accuracy.355

Equations (42)–(47) are six linear partial differential equations for the six variables 𝛿𝜌tot, 𝛿𝜌par, 𝛿𝜌gas, 𝛿𝑃,356

𝛿𝑇 , and 𝛿𝑣, all functions of position 𝑥 and time 𝑡. They are solved using a staggered leapfrog method (Press357

et al. 1992) that is 2nd order accurate in time and space, on an Eulerian grid that resolves a perturbation358

length scale to a fractional accuracy of ∼10−4, using timesteps that are typically ∼10−5 of the total integration359

duration. We have checked that our solutions have converged with grid cell size and timestep. Periodic360

boundary conditions are used throughout.361

Bounds on 𝛿𝜌par and 𝛿𝜌gas from mass conservation (eqs. 15–16) are enforced as follows. If at a given362

timestep the solver’s usual algorithm advances 𝛿𝜌par beyond its “floor” (15a), then 𝛿𝜌par is re-set to its floor363

(−𝜌par), with concomitant re-settings of 𝜕𝛿𝜌par/𝜕𝑡, 𝛿𝑇 , and 𝛿𝑃 (the other variables 𝛿𝜌tot and 𝛿𝑣 do not need364

re-setting). The same flooring procedure is applied to 𝛿𝜌gas (15b). To check the “ceiling” condition (16a),365

we track in every grid cell366

𝛿𝜌par, phase change only =

∫ 𝑡
[
𝜕𝛿𝜌par

𝜕𝑡
−
(
𝜌par

𝜌tot

)
𝜕𝛿𝜌tot
𝜕𝑡

]
𝑑𝑡 (48)367

which is a running tally of particle density changes with the contribution from particle transport368

(−(𝜌par/𝜌tot)𝜕𝛿𝜌tot/𝜕𝑡) subtracted off. If (48) exceeds the ceiling value of 𝜌gas, then all of the background369

gas has condensed and the calculation is halted. An analogous check is made for the ceiling condition (16b).370

For the calculations shown in this paper, the ceilings are not hit, while the floors sometimes are.371

3.1. Fixed background: Eigenmode evolution (𝜌par > 0 and H > 0)372

As a first test of our numerical solver, we use it to recover the eigenmode evolution derived in §2.373

Accordingly, all background quantities are assumed constant; in particular 𝑑𝑇/𝑑𝑡 = 0. We adopt 𝑇 = 2300374

K, 𝜅par = 2.5 cm2/g, and 𝜌gas = 𝜌sat(𝑇). We initialize 𝛿𝑇/𝑇 to be the sinusoid (35) with normalization375

constant A = 1. Other perturbation variables are initialized in relation to 𝛿𝑇/𝑇 according to the simplified376

matrix eq. (32).377

Figures 3, 4, and 5 show the time evolution of perturbations starting from three sets of initial conditions378

that illustrate, respectively, a high 𝑘 > 𝜔𝐿/𝑐 stationary mode, a low-𝑘 stationary mode, and a high-𝑘379

acoustic mode. In each case, the numerical solution compares well with the analytic solution obtained by380

multiplying initial values by exp(−𝑖𝜔𝑡). Deviations between analytic and numerical solutions are due to381

technical differences between the calculations. The largest deviations manifest for the high-𝑘 stationary382

mode (Fig. 3), where the analytic solution (33) assumes the limit 𝜌par/𝜌gas ≪ 1 (eqs. 13a and 24), and the383

numerical solution adopts 𝜌par/𝜌gas = 0.1. The latter choice is made to keep 𝜌par + 𝛿𝜌par ≥ 0 in the code (the384

floor condition 15a), since for the high-𝑘 stationary mode, 𝛿𝜌par can be negative and grow to especially large385

magnitude, requiring a commensurately large 𝜌par. We have verified that discrepancies between analytic and386

numerical solutions are eliminated by choosing 𝜌par ≪ 𝜌gas in the numerical solution, and A ≪ 1 to force387

|𝛿𝜌par |/𝜌par ≪ 1 at all times (data not shown). To avoid analogous discrepancies for the high-𝑘 acoustic388

mode (Fig. 5), we set 𝜌par/𝜌gas = 10−5, which we can do in this case without violating 𝛿𝜌par ≥ −𝜌par (even389

for A = 1) because the acoustic mode grows relatively slowly.390
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3.2. Fixed background: No background particles or heating (𝜌par = 0 and H = 0)391

We now experiment with a fixed background that has no particles or heating. Relative to the background392

𝜌par = 0, the perturbation particle density 𝛿𝜌par can be positive from condensing background gas, but not393

negative since there are no background particles to evaporate (15a). This discontinuity in behavior cannot394

be accommodated by the Fourier analysis of §2.395

Background quantities aside from 𝜌par = 0 are the same as those for §3.1. Initial perturba-396

tions are as follows: 𝛿𝑇/𝑇 = 10−6 sin[2𝜋𝑥/(0.5 km)] (i.e. A = 1 and high 𝑘 > 𝜔𝐿/𝑐), 𝛿𝑣 = 0,397

𝛿𝜌par = max(0,−𝑑𝜌sat/𝑑𝑇 · 𝛿𝑇) ≥ 0, and 𝛿𝜌gas = −𝛿𝜌par. Our initial 𝛿𝑇/𝑇 is the same as that of the398

high-𝑘 stationary eigenmode of Fig. 3, but the other perturbation variables do not follow those of any eigen-399

mode. For these input parameters, 𝛿𝜌par hits its floor of 0 and we need to apply the re-setting procedure for400

the first 2 timesteps of the integration, out of a total of over 40000 steps spanning 4.7 seconds. Re-setting to401

the floor is hardly needed because the fluid mostly cools when H = 0, 𝜌par = 0 and 𝛿𝜌par ≥ 0 (see the last402

two terms of the energy eq. 46); eventually 𝛿𝑇 < 0 and 𝛿𝜌par > 0 everywhere.403

Figure 6 shows the time evolution of perturbed quantities for our non-eigenmode initial conditions, and404

can be compared against Fig. 3 for the stationary eigenmode. Qualitatively, the behaviors shown are similar:405

mass is transported from regions of low particle density to regions of high particle density. In both figures,406

the peaks in 𝛿𝜌par grow exponentially with similar 𝑒-folding times, but the contrast between peaks and407

troughs is smaller in Fig. 6: the 𝛿𝜌par < 0 troughs of the eigenmode are flattened and made > 0 when408

𝜌par = 0. Figure 7 traces how the peak-to-trough contrast max 𝛿𝜌par/min 𝛿𝜌par decreases with time when409

𝜌par = 0.410

Unlike in the eigenmode, phase relationships between 𝛿𝜌par, 𝛿𝑣, and 𝛿𝑃 are not fixed. For example, in411

Fig. 6, max 𝛿𝜌par does not always correspond to min 𝛿𝑃, and fluid velocities 𝛿𝑣 do not always point from412

high to low 𝛿𝑃 (contrast with Fig. 3).413

3.3. Time-varying background: A secularly cooling medium (𝜌par > 0 and H = 0)414

We finally experiment with a background state having a seed particle density (𝜌par > 0) but no heating415

(H = 0). Such a background, assumed spatially uniform and motionless, cools secularly according to eq. (9)416

with all ∇· terms zeroed out:417

𝑑𝑇

𝑑𝑡
= −

4𝜎𝑇4𝜌par𝜅par

𝜌tot𝐶 + 𝐿vap(𝑑𝜌sat/𝑑𝑇)
. (49)418

For a given initial temperature 𝑇 (0) = 2300 K, initial gas density 𝜌gas(0) = 𝜌sat(𝑇 (0)), and initial particle-419

to-gas ratio 𝜌par(0)/𝜌gas(0), eq. (49) is solved as an ordinary differential equation for 𝑇 (𝑡) with 𝜌par =420

𝜌tot − 𝜌sat(𝑇) and 𝜌tot = 𝜌gas + 𝜌par = constant. Remaining parameters are set to fiducial values (𝐶 = 8× 106
421

erg/g/K, 𝐿vap = 3×1010 erg/g, 𝜅par = 2.5 cm2/g). From 𝑇 (𝑡) we obtain 𝑃(𝑡) = 𝑃sat(𝑇) and 𝜌gas(𝑡) = 𝜌sat(𝑇).422

Figure 8 shows the time evolution of background quantities for two initial particle-to-gas ratios423

𝜌par(0)/𝜌gas(0) = {10−5, 10−1}. After a nearly isothermal phase when cooling is slow because particle424

densities are low, the temperature, pressure, and gas density drop precipitously around a time425

𝑡condense ∼
𝐿vap

4𝜎𝑇 (0)4𝜅par
ln

(
𝜌tot/2
𝜌par(0)

)
(50)426

when the bulk of the background medium condenses. Equation (50) is an order-of-magnitude estimate427

derived as follows. For a given mass in particles to 𝑒-fold, radiation must carry away the latent heat of a gas428

mass comparable to the particle mass. The time for radiation to do so, 𝐿vap/(4𝜎𝑇 (0)4𝜅par), is independent429
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Figure 6. Time evolution of perturbations with no background particles (𝜌par = 0) and no background heating (H = 0),
calculated by numerical solution of eqs. (42)–(47) with 𝛿𝜌par ≥ 0 enforced (§3.2). Input parameters are: 𝑇 = 2300
K, 𝜌gas = 𝜌sat(𝑇), 𝛿𝑇/𝑇 = 10−6 sin[2𝜋𝑥/(0.5 km)], 𝛿𝑣 = 0, 𝛿𝜌par = max(0,−𝑑𝜌sat/𝑑𝑇 · 𝛿𝑇), and 𝛿𝜌gas = −𝛿𝜌par.
Since the gas-particle mixture can only cool radiatively with gas condensing into more particles, eventually 𝛿𝑇 < 0,
𝛿𝜌gas < 0, and 𝛿𝜌par > 0 everywhere. As in stationary eigenmode 1, fluid is transported out of initially hot into initially
cold regions, amplifying local particle-to-gas ratios above what static condensation would give (𝛿𝜌par > −𝛿𝜌gas as
opposed to 𝛿𝜌par = −𝛿𝜌gas). Compared to the eigenmode, however, max 𝛿𝜌par grows more slowly here, and transport
is not as coherent; the peaks and troughs of 𝛿𝑃 and 𝛿𝑣 change in position with passing time (contrast with Fig. 3).
Consequently, the difference between particle-rich (max 𝛿𝜌par) and particle-poor (min 𝛿𝜌par) regions diminishes (see
also Fig. 7).
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Figure 7. Time variation of the contrast between particle-rich and particle-poor regions, in the case where there are
no background particles (𝜌par = 0) and no background heating (H = 0). Although both max 𝛿𝜌par and min 𝛿𝜌par
grow exponentially fast (see companion Fig. 6), the difference between them diminishes, and the medium becomes
increasingly uniform.

of mass or length scale under our assumption that radiation escapes freely. The logarithm in 𝑡condense counts430

the number of particle mass 𝑒-foldings needed to condense half the medium, and explains why in Fig. 8 the431

timescale for background evolution depends only weakly on 𝜌par(0)/𝜌gas(0).432

We substitute 𝑇 (𝑡), 𝑃(𝑡), 𝜌gas(𝑡), and 𝜌par(𝑡) = 𝜌tot − 𝜌gas(𝑡) into eqs. (42)-(47) and use our leapfrog433

integrator to solve for the evolution of small perturbations atop the time-varying background. Figure 9434

shows the evolution of perturbations using the same high-𝑘 stationary eigenmode initial conditions as in435

Figure 3. Qualitatively, the evolutions are similar. Background quantities change by only order-unity factors436

over the time range plotted, and the initial perturbation is small enough that even as the mode grows, neither437

the floor nor ceiling on 𝛿𝜌par is reached. At the same time 𝑡 = 4.7 s, 𝛿𝜌par/𝜌tot is higher in Figure 9 than in438

Figure 3 by a factor of 2. We attribute the faster particle growth rate to the reduction in latent heating as the439

background gas density declines. One way to see this is to re-derive the stationary mode growth rate in the440

high-𝑘 limit, now taking care to distinguish between 𝜌gas and 𝜌tot:441

𝜔1 =
+𝑖𝑎𝜔𝑇

𝑏 + ℓ𝜌gas/𝜌tot
. (51)442

The factor of 𝜌gas/𝜌tot is set to unity in the less general eq. (28), and here in (51) increases 𝜔1 as 𝜌gas443

decreases. Note how 𝜌gas multiplies against the latent heat parameter ℓ (see also the term ∝ 𝐿vap𝜌gas in the444

master energy eq. 9).445446

As a second experiment, we start with non-eigenmode initial conditions: 𝛿𝑇/𝑇 = 7 ×447

10−4 sin[2𝜋𝑥/(0.5 km)] (i.e. A = 700 and high 𝑘 > 𝜔𝐿/𝑐), 𝛿𝑣 = 0, 𝛿𝜌par = max(−𝜌par(0), 𝑑𝜌sat/𝑑𝑇 · 𝛿𝑇),448

and 𝛿𝜌gas = −𝛿𝜌par. Background initial conditions are the same as those above except 𝜌par(0)/𝜌gas(0) =449
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Figure 8. When there is a non-zero initial background particle density (𝜌par(𝑡 = 0) > 0), but no heating (H = 0),
background quantities𝑇 , 𝑃, and 𝜌gas decrease secularly as the gas-particle mixture radiatively cools, and gas condenses
into particles. Dotted vertical lines mark 𝑡condense when roughly half of the gas has condensed, as estimated by (50).
This condensation time is only logarithmically sensitive to the initial particle-to-gas ratio labeled above each set of
plots. In the optically thin limit, the rate of temperature decrease scales with 𝜌par𝑇

4 (eq. 49), which reaches its
maximum near 𝑡condense because of increasing 𝜌par, and later falls because of decreasing 𝑇 . Pressure and gas density
under saturated conditions are exponentially sensitive to temperature and drop steeply.

10−2. These inputs are similar to those of §3.2 except for the larger temperature perturbation and non-zero450

initial background particle density.451

Figures 10 and 11 show the evolution from this non-eigenmode experiment. The initially large perturbation452

amplitude (A = 700) and relatively small 𝜌par(0) cause 𝛿𝜌par to hit the floor of −𝜌par at 𝑡 = 0: the troughs453

in 𝛿𝜌par start flattened. Afterward, the −𝜌par floor (tracked by horizontal dashed lines in Fig. 10) becomes454

more negative from condensing background gas, freeing the 𝛿𝜌par troughs to become more negative as well455

(contrast with Fig. 6). Mass is transported at relatively large velocities out of particle troughs and into456

particle crests, and eventually at 𝑡 = 8.5 s, the particle trough again hits the floor. The creation of a particle457
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Figure 9. Numerical evolution of perturbations on top of a secularly cooling background (H = 0, and initial particle-
to-gas ratio 𝜌par(0)/𝜌gas(0) = 0.1). See Fig. 8, right panel, for how background quantities evolve. Initial perturbations
at 𝑡 = 0 are identical to those of the high-𝑘 stationary eigenmode in Fig. 3. Comparing the results here for a time-varying
background with those in Fig. 3 for a fixed background, we see that perturbations grow similarly — qualitatively the
evolution is that of the high-𝑘 stationary eigenmode, with |𝛿𝜌par | ≫ |𝛿𝜌gas |. Perturbations grow faster here as the
background gas density 𝜌gas decreases (eq. 51).
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void (𝛿𝜌par + 𝜌par = 0) at this time can be seen more directly in the companion Fig. 11, which tracks the458

evolution of the total particle-to-gas ratio at the location of minimum 𝛿𝜌par.459

4. SUMMARY AND DISCUSSION460

We have shown that a hot saturated vapor and its particle condensates are subject to a linear instability461

whereby particle overdensities amplify exponentially. When particles freely radiate their energy to infinity,462

the particle-rich get richer and the particle-poor get poorer — regions of saturated gas that are overdense463

in particles radiate more, thereby cooling and condensing faster. In the fastest growing mode, clumps and464

voids grow in place (the mode has zero phase velocity) with an 𝑒-folding time 𝜔−1
𝐿

equal to the time it takes465

a perturbation to radiate away its latent heat of condensation: 𝜔−1
𝐿

≃ 𝐿vap/(4𝜎𝑇4𝜅par) for latent heat 𝐿vap466

(energy per gas mass), Stefan-Boltzmann constant 𝜎, temperature 𝑇 , and opacity 𝜅par (cross section per467

particle mass). This growth time is independent of wavelength 2𝜋/𝑘 in the radiation free-streaming limit,468

and measured in seconds for mm-sized particles at 𝑇 ≃ 2300 K. Particle densities grow most dramatically if469

the growth time 𝜔−1
𝐿

is longer than the time it takes a sound wave traveling at speed 𝑐 to cross a perturbation470

lengthscale. In this high 𝑘 > 𝜔𝐿/𝑐 regime, pressure gradients have enough time to transport mass out471

of high-temperature, high-pressure, particle-poor zones into low-temperature, low-pressure, particle-rich472

zones. For reference, a cloud of saturated silicate vapor kilometers across contains the mass equivalent of a473

solid planetesimal tens of meters in size.474

This radiation-condensation instability is present whether or not the medium is subject to a constant475

background heating term H . If H ≠ 0, then an equilibrium state can be formally defined and perturbed,476

leading to unstable eigenmodes. The eigenmode analysis is akin to that underlying Field’s (1965) thermal477

instability; there as here, the dispersion relation for Fourier modes is a cubic equation for wave frequency,478

with two acoustic modes and a “thermal condensation” mode (analogous to our high-𝑘 , zero phase speed,479

fast growing mode), all of which can be unstable. If on the other hand H = 0, then no equilibrium can480

be defined, as the fluid cools secularly from whatever particles are present. Perturbations on top of this481

time-varying background are still unstable, as we have shown by numerical experiment. Perturbations grow482

faster as the background gas density decreases and latent heating diminishes.483

Our study assumed a wholly condensible gas, i.e. a medium composed entirely of silicates and/or metals.484

Adding an inert, non-condensible gas like hydrogen increases the dynamical and thermal inertia of the fluid,485

and would be expected to slow growth rates. Chiang (2024) found that adding H2 to condensing, cavitating486

bubbles slowed their collapse. The radiation-condensation instability thus tempered might still generate487

overdensities large enough to trigger other concentration mechanisms, such as the streaming instability and488

gravitational instability (e.g. Li & Youdin 2021). Vapor plumes from colliding asteroids are practically489

H2-free insofar as plume pressures overwhelm nebular pressures (Choksi et al. 2021); the latter declines to490

zero as the protoplanetary disk dissipates (Krot et al. 2005). Whole condensible gases — second-generation491

gas from vaporizing collisions between rocky/icy bodies — may also be found in extrasolar debris disks492

(e.g. Marino et al. 2022, and references therein).493

Our linear instability depends on optically thin radiative cooling: the ability of particle overdensities494

to shed their energy to infinity. The nonlinear study of cavitating bubbles by Chiang (2024) found a495

similar requirement: although the bubbles themselves could be optically thick, their surroundings needed496

to have a lower radiation temperature to serve as an energy sink. To our knowledge, Field’s thermal497

instability only manifests in environments where cooling photons can freely escape, including the solar498

corona (e.g. Brughmans et al. 2022), the diffuse interstellar medium (e.g. Jennings & Li 2021), and the499

intracluster medium in galaxy clusters (e.g. Qiu et al. 2020).500
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Figure 10. Another numerical experiment in perturbing a background that secularly cools (H = 0), now with an
initial background particle-to-gas ratio of 𝜌par(0)/𝜌gas(0) = 10−2, and non-eigenmode initial conditions: 𝛿𝑇/𝑇 =

7 × 10−4 sin[2𝜋𝑥/(0.5 km)], 𝛿𝑣 = 0, 𝛿𝜌par = max(−𝜌par(0), 𝑑𝜌sat/𝑑𝑇 · 𝛿𝑇), and 𝛿𝜌gas = −𝛿𝜌par. Dashed horizontal
lines in the middle right panel mark the−𝜌par(𝑡)/𝜌tot “floor”, i.e. the lower bound on 𝛿𝜌par/𝜌tot from mass conservation;
the condition 𝜌par + 𝛿𝜌par ≥ 0 is enforced following a re-setting procedure. Our simulation parameters and initial
conditions (in particular a relatively large initial temperature perturbation, A = 700) are such that 𝜌par + 𝛿𝜌par hits zero
in initially hot regions, at 𝑡 = 0 and 𝑡 ≃ 8.5 s (by which time more than half the background gas has condensed). The
particle voids at the end of the simulation are carved out by relatively large velocities 𝛿𝑣. See the companion Fig. 11.
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Figure 11. Evolution of temperatures and particle-to-gas ratios in the perturbed, secularly cooling fluid simulated
in Fig. 10. Upper panel: Temperatures of the background, the location of maximum perturbed particle density
(subscript max 𝛿𝜌par), and the location of minimum (most negative) perturbed particle density (subscript min 𝛿𝜌par).
The location of min 𝛿𝜌par varies with time and is not always half a wavelength away from the location of max 𝛿𝜌par
(see Fig. 10). Lower panel: Particle-to-gas ratios of the background 𝜌par(𝑡)/𝜌gas(𝑡), the location of maximum
perturbed particle density [(𝜌par + 𝛿𝜌par)/(𝜌gas + 𝛿𝜌gas)]max 𝛿𝜌par , and the location of minimum perturbed particle
density [(𝜌par + 𝛿𝜌par)/(𝜌gas + 𝛿𝜌gas)]min 𝛿𝜌par .
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If instead radiative cooling is treated in the optically thick limit, with the free-streaming term ∝ −𝑇4𝜌par501

in the energy equation replaced with a diffusive term ∝ ∇ · (𝜌−1
par∇𝑇4) (where 𝜌par is the particle density),502

then instability is suppressed, as sound waves are damped by diffusion, including by thermal gas conduction503

(e.g. Field 1965). This presents a problem for applying thermal instability to the vapor plume from colliding504

asteroids, insofar as the plume may be optically thick (Choksi et al. 2021). The same problem is noted by505

Chiang (2024), who suggests that the radiation-condensation instability may be confined to the edges of a506

debris cloud, or to times when the cloud is more transparent — either early on when the cloud is too hot for507

many solids to condense, or later when the cloud has thinned out. Shear flows and turbulence within the508

impact plume may also interfere with thermal instability. These issues should be addressed in future work.509

See Balbus (1986) for how thermal instability plays out atop a dynamical flow, and Robertson & Goldreich510

(2012) for how a turbulent gas evolves upon compression or expansion.511

We thank Rixin Li, Francois Tissot, J.J. Zanazzi, and Shangjia Zhang for discussions. We are also grateful512

to Andrew Ingersoll for reminding us of the application of thermal instability to solar prominences. This513

work was supported by Berkeley’s Esper Larsen, Jr. fund, and a Simons Investigator grant.514

Software: numpy (Harris et al. 2020), scipy (Virtanen et al. 2020), matplotlib (Hunter 2007)515

REFERENCES

Balbus, S. A. 1986, ApJL, 303, L79,516

doi: 10.1086/184657517

Bromley, J., & Chiang, E. 2023, MNRAS, 521, 5746,518

doi: 10.1093/mnras/stad932519

Brughmans, N., Jenkins, J. M., & Keppens, R. 2022,520

A&A, 668, A47,521

doi: 10.1051/0004-6361/202244071522

Buchler, J. R., & Regev, O. 1982, ApJ, 261, 301,523

doi: 10.1086/160341524

Chiang, E. 2024, ApJL, 973, L28,525

doi: 10.3847/2041-8213/ad7738526

Choksi, N., Chiang, E., Connolly, Harold C., J.,527

Gainsforth, Z., & Westphal, A. J. 2021, MNRAS,528

503, 3297, doi: 10.1093/mnras/stab503529

Cieza, L. A., Casassus, S., Tobin, J., et al. 2016,530

Nature, 535, 258, doi: 10.1038/nature18612531

Desch, S. J., & Connolly, H. C., J. 2002, Meteoritics532

and Planetary Science, 37, 183,533

doi: 10.1111/j.1945-5100.2002.tb01104.x534

Fegley, Bruce, J., & Schaefer, L. 2012, arXiv e-prints,535

arXiv:1210.0270. https://arxiv.org/abs/1210.0270536

Field, G. B. 1965, ApJ, 142, 531, doi: 10.1086/148317537

Harris, C. R., Millman, K. J., van der Walt, S. J., et al.538

2020, Nature, 585, 357,539

doi: 10.1038/s41586-020-2649-2540

Hewins, R. H., Condie, C., Morris, M., et al. 2018,541

ApJL, 855, L17, doi: 10.3847/2041-8213/aab15b542

Hunter, J. D. 2007, Computing In Science &543

Engineering, 9, 90, doi: 10.1109/MCSE.2007.55544

Jennings, R. M., & Li, Y. 2021, MNRAS, 505, 5238,545

doi: 10.1093/mnras/stab1607546

Johnson, B. C., & Melosh, H. J. 2012a, Icarus, 217,547

416, doi: 10.1016/j.icarus.2011.11.020548

—. 2012b, Nature, 485, 75, doi: 10.1038/nature10982549

—. 2014, Icarus, 228, 347,550

doi: 10.1016/j.icarus.2013.10.022551

Kittel, C., & Kroemer, H. 1980, Thermal Physics, 2nd552

edn. (W. H. Freeman)553

Krot, A. N., Amelin, Y., Cassen, P., & Meibom, A.554

2005, Nature, 436, 989, doi: 10.1038/nature03830555

Li, R., & Youdin, A. N. 2021, ApJ, 919, 107,556

doi: 10.3847/1538-4357/ac0e9f557

Marino, S., Cataldi, G., Jankovic, M. R., Matrà, L., &558
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