

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

World-wide topic, local expertise

Class practical aspects

- Syllabus
- Grading
 - Class participation
 - Final project & paper
- Content: readings & in-class discussions
- "Electronic" materials:
 - bDrive for sharing readings
 - Class website for lecture slides

Class final project

- Design an AO-related project (implementation not required!)
 - A science question that can be addressed with a particular type of AO
 - A new piece of hardware/control
- Detail the key requirements and how they fit in the framework discussed in class
- Final paper + presentation

External resources

- Key readings
 - Principles of AO, R. Tyson [Eng.]
 - AO in astronomy, F. Roddier ed. [Phy./Ast.]
 - AO for astronomical telescopes, J. Hardy [Phy./Ast.]
 - AO for biological imaging, J. Kubby ed. [e-book]
 - Many research articles (back to the source!)
- Websites
 - UC Center for AO (CfAO) cfao.ucolick.org
 - Many more...

Who are we?

- What's your background?
- What do you expect/hope to learn from it?

An AO timeline

- When was the
 - idea of AO first proposed?
 - the first on-sky military demonstration?
 - the first on-sky astronomical demonstration?
 - the first full-scale astronomical instrument?
 - the first vision science demonstration?
 - the first microscopy AO demonstration?

An AO timeline

What do you know about AO?

What the class will cover

- Image formation, effect of aberrations
- Principles and history of AO
- Key building blocks of an AO system
- Applications of AO
- Considerations to design an AO system
- Advanced AO systems
- Doing the "best" science with AO

•

AO: the basic concept

Basic goal: correct for optical aberrations

High-resolution imaging
Image quality boosting
Beam control/quality

Active vs adaptive optics

- Exact terminology is field-dependent
- Active optics
 - moving elements can be (predictively) adapted to correct for aberrations
 - e.g, thermal deformations, gravity-induced flexures
- Adaptive optics
 - Measurement-based correction, in "closed loop"
 - Continuous feedback
 - "fast" correction (~kHz vs ~Hz in astronomy)

Fiber coupling with adaptive optics for free-space optical communication

AO in a variety of fields

Low-noise adaptive optics for gravitational wave interferometers

Adaptive Optics for High-Peak-Power Lasers –
An Optical Adaptive Closed-Loop Used for High-Energy Short-Pulse Laser Facilities:
Laser Wave-Front Correction and Focal-Spot Shaping

Microelectronics and Microsystems
Optical Military Systems

Adaptive Optical Systems

What is resolution? Image/beam quality?

 What metric(s) to use to measure improvement in image resolution and/or quality?

The dual nature of light

- Light can be described
 - as an ensemble of particles (photons)
 - as an ensemble of energy-carrying waves
- Neither is a perfect description; it depends on the situation
 - Photo-electric effect: photons
 - Diffraction, interferences: waves
- Both approaches are generally needed

Image formation: geometric optics

- Photon paths = light "rays"
- The objective focuses all rays onto a single spot on the camera
 - typically using refraction (Snell's law)

Diffraction limit: geometric optics

- How well collimated is the focus? How small is the resulting image?
- Heisenberg's uncertainty principle: $\Delta x \Delta p \approx \hbar$
 - Photon pass through a diameter D
 - − Hence $\Delta p \approx \hbar/D$
 - For a photon $p = hv/c = h/\lambda$
 - − Thus $\Delta p/p \approx \Delta \Theta \approx \lambda/D$
- Image spot has a finite size, on the order of λ/D

Image formation: wave optics

- Huygens' principle: each point of a wavefront is the source of a new spherical wavefront
- Those wavefronts interfere constructively all together in a single point: the focal point

Diffraction limit: wave optics

Intermediate step: Young's slit experiment

Diffraction limit: wave optics

- Objective = a broad range of "baselines"
 - Longest one is the diameter D
 - Thus, the shortest fringe spacing is $\Delta\Theta \approx \lambda/D$
- Image spot has a finite size, on the order of λ/D

- The relationship between the E/B fields in the pupil and image planes is a Fourier transform
- Finite diameter pupil \rightarrow Airy function = $[J_1(x)/x]^2$
 - FWHM = 1.02 λ/D ; first dark ring at 1.22 λ/D
 - Also applies along z axis for source not at infinity

- The relationship between the E/B fields in the pupil and image planes is a Fourier transform
 - Angular/linear dimensions $(\Theta, \varphi/x, y)$ in image plane
 - Spatial frequencies (u,v) in pupil plane
 - Think about Young's slit experiment...

Example for a binary stellar system

Example for a complex image

Optical system: PSF and OTF

- Any optical system can be described by the way it affects light propagating through it
- In the image domain, this is described by the Point Spread Function
 - $-Img(x,y) = Obj(x,y) \otimes PSF(x,y)$
- In the Fourier (pupil) domain, this is described by the Optical Transfer Function
 - $-[FFT(Img)](u,v) = [FFT(Obj)](u,v) \times OTF(u,v)$
- PSF(x,y) = FFT[OTF(u,v)]

OTF = transmission of information in the Fourier domain

- OTF = auto-correlation of entrance pupil
- How many pairs of "elements" exist in the pupil to transfer information on a given scale?

Example for a complex image

Properties of OTF

- OTF is a complex function: amplitude and phase
 - If aperture is centro-symmetric, OTF is a real function
 - MTF = Modulus Transfer Function
- Characterize not only imaging instrument but everything from the light source to the detector
 - $OTF_{total} = \Pi OTF_{sources}$
- Knowing/understanding/controlling the OTF of a system is key to achieve diffraction limit