

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

Laser Guide Star AO

- Regular (Natural Guide Star) AO requires a bright reference star
 - Very limited sky coverage (anisoplanatism)
 - Many science cases "closed off"
- Using a laser to project an artificial guide star
 - is the next step
 - Initially a military project
 - Secret until 1991
 - Now widespread

LGS flavors (I)

- Use Rayleigh scattering off molecules in the atmosphere to produce a spot as high as possible ($z \approx 20 \text{ km}$)
- Use pulsed lasers and gating to select only photons from a specific layer
 - Removes signal from lower atmos.
- Works best at short λ (e.g., UV)
 - Higher scattering cross-section

LGS flavors (II)

- Use resonant scattering off sodium atoms in thin layer above the mesosphere
 - $-z \approx 90 \text{ km (} \pm 15 \text{ km)}$
 - Extremely high cross-section
 - Strong requirement on laser λ (589nm)

LGS challenges (I)

- Upward laser propagation follows the exact same path as LGS light downward
 - Received laser star has imprint of turbulence
 - Laser "star" is speckled
 - Global tip-tilt is un-sensed!
- Separate tip-tilt star needed
 - On- or off-axis (within θ_0)
 - Can be much fainter
- Sky coverage < 100%

LGS challenges (II)

- Light from the laser spot does not sample turbulence in the same way as starlight
 - "missing" the edges of the beam
- This "cone effect" is important for
 - Low LGS spots (Rayleigh)
 - High turbulent layers (tropopause)
 - Large telescopes
 - $-\sigma^{2}_{cone} \approx (D/d_{0})^{5/3} [d_{0} \approx 1 \text{ m}]$

LGS challenges (III)

- Launching telescope and spot elongation
 - Mechanical/optical complexity
 - Spot elongation = reduced precision for S-H WFS

LGS challenges (IV)

- The sodium layer is not static, with varying height and flux return over tens of minutes
 - Need to adjust focus of launch telescope
 - Need to adjust conjugation of WFS

LGS challenges (V)

- Brightness of laser point source is limited to less than the brightest stars
 - Sometimes insufficient for poor conditions
- Excitation can be saturated
 - Natural linewidth is much broader than laser bandwidth: only a small fraction of atoms are available for excitation
 - Pumping up laser power does not help!

LGS challenges (VI)

- Complex control with many active elements and feedback mechanisms compared to normal AO
- More optical/mechanical elements
- Operations issues:
 - Laser safety
 - "spotters"
 - Space Command

Next week readings

- Advanced adaptive optics systems
 - Multi-Conjugate AO (MCAO)
 - Ground-Layer AO (GLAO)
 - Multi-Object AO (MOAO)
 - Extreme AO (xAO)
 - Hubin et al. (2006)
- AO for laser propagation (J. Ballesta's presentation)