

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

Speckle properties

• Hinkley et al. (2007)

Speckle properties

- Several types of speckles, different origins
 - Atmospheric turbulence
 - Random behavior, can be averaged out (BUT spatial and
 - temporal correlations!)
 - Short timescale ($\approx \tau_0$)

Racine et al. (1999)

Speckle properties

- Several types of speckles, different origins
 - Telescope and instrument, either
 - fixed/pinned (static speckles), can be calibrated out
 - very slowly varying (>> τ_0), need specific obs. stratregy

Hinkley et al. (2007)

Non-common path errors

 A critical (and easy to overlook) limitation of AO: aberrations that the wavefront sensor

cannot detect

- Instrument
- Atmospheric layer if conjugated to another layer

Anisoplanatism

- Generally speaking, turbulence sampled by the "sensing beam" differs from that of the "science beam"
- Can have a variety of origins
 - Angular displacement
 - Temporal delay
 - Chromatic effects
 - "Focus depth" mismatches

Anisoplanatism

- Angular anisoplanatism can be predicted in the case of Kolmogorov turbulence
- θ_0 measures decorrelation and is related to r_0
 - − For a single layer: $\theta_0 \approx 0.314 \text{ r0 cos } z / H$ (a few ")
 - Same behavior with λ
 - Steeper dependence on z

Bolbasova & Lukin (2009)

AO performance

- Performance of AO systems depend primarily on D/r_0 and the number of orders corrected
 - It doesn't take much to be diffraction-limited!

Wilson & Jenkins (1996)

Optimal optical conjugation

- What is the best choice of pupil plane: primary mirror or turbulence layer?
 - Compromise between performance and implementation constraints (Which layer? SNR?)

Wilson & Jenkins (1996)

Homework

- Lick AO near-IR images of a single star and a binary system at multiple wavelengths
 - Compute theoretically "perfect" PSF
 - D_{tel} = 3m, $D_{obscuration}$ = 80cm (+4 "spider arms")
 - Measure Strehl ratio and r_o
 - Quantify PSF variability
 - Measure the flux ratio and separation of the binary system
- This is not a test!

Homework

- The simplest data reduction cookbook:
 - Median all images in a given sequence
 - Subtract it off each image (sky+dark current)
 - Align individual images
 - Combine all images
- This neglects bad pixels and flat field issues;
 they are minor for these particular datasets

Next week readings

- Wavefront sensing techniques
 - § 5.1-5.3 in Roddier (1999)
 - Gonsalves (1982)
 - Kocher (1983)
 - Ragazzoni (1996)
- See also Tyson's § 5.1-5.4 [more detailed]