

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

AO control: what is it?

 Not the most iconic part of an AO system, but arguably the most important!

AO control: defining the problem

- Input = WFS measurements
- Output = DM commands
- How to go from A to Z while ensuring
 - Efficiency
 - Reliability
 - Stability
 - Optimal (minimum?) phase residuals
- Take into account response-to-command and previous position (relative command)

"Direct" WFS-DM link

 Reduce the intermediate steps and pieces of hardware to the bare minimum

- Babcock's idea had no computer!
 - Direct e⁻ detection/transport
- Limitations:
 - 1:1 mapping of WFS and DM
 - No stability control
 - Sensitivity to WFS noise

A simple matrix representation

- Act on each actuator & record the effect on WFS
 - This is the poke matrix, the inverse of which is the control matrix
 - No explicit reconstruction of the phase needed
- It is often more convenient to first reconstruct the wavefront from the WFS and then determine the appropriate DM commands
 - More operations to effectuate
 - +Quality check possible in intermediate step

A simple matrix representation

- In general, matrix is rectangular and cannot be inverted directly (over-constraining needed)
 - Pseudo-inverse
 - Least square approach
 - Singular value decomposition (avoid singularities)
 - Sparse matrix techniques (faster computation)
 - Fourier transform reconstructor (better behavior, natural filtering)

A simple matrix representation

- Computing cost of matrix approach can be high/prohibitive, depending on situations
 - Can be problematic even for slow operations
 - Vector-matrix mult. is $O(n^2)$, but $O(n \log n)$ is possible
 - Memory requirements could be challenging for $n \approx 10^4$
- Matrix inversion can be performed ahead of time to save computing time, but control scheme is then fixed by design
 - No ability to adjust to situations

More advanced control methods

- It is useful to include prior knowledge about noise and/or wavefront corrugation in reconstruction step
 - Informed reconstruction (e.g., Kolmogorov spectrum)
- Ability to adjust control scheme regularly can improve efficiency/stability
 - variable gain in control loop
 - aberration-dependent control algorithm

AO control: key factors (I)

- Time (frequency) response of DM
 - Correction is delayed relative to sensing

Bode plots

- Bode plots represent the temporal transfer function of a system
 - Max temporal frequency ("bandwidth")
 - Frequencies at risk of overshooting

AO control: key factors (II)

- Time (frequency) response of DM
 - Correction is delayed relative to sensing
- Spatial sampling of DM and WFS
 - Cannot sense and/correct high spatial frequency modes (aliasing)
 - Blind/null/"phantom" modes

Aliasing

- If WFS more densely sampled than DM, some high-frequency modes can be sensed but not corrected for
 - Aliasing with lower-order modes

Evans et al. (2009)

Blind modes

- Depending on WFS geometry, even some loworder modes can be "invisible"
 - Global piston (don't care in most cases...)
 - "waffle" for a S-H WFS (flat slope within aperture)

Makidon et al. (2005)

AO control: key factors (III)

- Time (frequency) response of DM
 - Correction is delayed relative to sensing
- Spatial sampling of DM and WFS
 - Cannot sense and/correct high spatial frequency modes (aliasing)
 - Blind/null/"phantom" modes
- Gain factors for DM commands
 - Trade-off between rapid correction and risk of overshoot/instability

DM gain

- High gain = immediate and large movement
 - Risk of overshooting and ringing
 - Memory loss of previous state(s), possibly oscillating around stable position
- Low gain = moving only a little
 - Slow to get to the correct position (N iterations)
 - May never be in the right state
- A tricky compromise that may not be constant

(Some) Complicating factors

- WFS noise and its propagation
 - Need to estimate noise and its statistical properties
- Influence function of DM
 - Limits ability to produce high-order correction
- Perturbations from different sources
 - Telescope wind shaking, AO bench vibrations
- Discretization of analogic commands
 - Limited precisions in correction

AO error budget: how well do we do?

- The smaller the residual wavefront fluctuations, the better the image quality
- Usually measured with Strehl ratio
 - $-SR = exp \sigma_{\omega}^{2}$. $exp \sigma_{l}^{2}$ (Maréchal approx.)
- In practice, phase fluctuations dominate (and may be the only one we can correct)
- Other possible metrics, such as contrast at a given position, or FWHM

Scintillation

 $\sigma_l^2 \approx [V(\lambda H) / r_0]^{5/3}$

(Kolmogorov turb.)
Negligible!

Non-common path errors

Can be estimated from calibration data acquisition (sharpening; also addresses static aberrations)

WFS errors

Photon/detector noise, propagated through control loop; extraneous light; possibly spatially-dependent

Reconstruction errors

Number of corrected modes $\sigma_{\varphi}^{2} \approx N_{m}^{\sqrt{3}/2} (D/r_{0})^{5/3}$

Aliasing, blind modes

Ability of DM to match corrugated wavefront $\sigma_{\varphi}^{2} \approx (r_{S}/r_{0})^{5/3}$

Bandwidth errors

AO loop is constantly late relative to turbulence

$$\sigma_{\varphi}^{2} \approx (f_{Greenwood}/f_{band})^{5/3}$$

where $f_{Greenwood} \approx v_{wind}/r_0$

Many other sources of errors

- DM influence function
- WFS sampling errors
- Averaging within subapertures
- Anisoplanatism $\sigma_{\varphi}^{2} \approx (\theta / \theta_{0})^{5/3}$
- Discretization of control signal
- Electronic noises
- Dynamic calibration errors
- Interactions between DMs
- Extraneous modes (vibrations)

Next week readings

- AO for observing the Sun
 - von der Lühne (1985)
 - Rimmele (2000)
- AO for retinal imaging (A. Roorda's visit)