

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

- Day-time vs. night-time
 - Poorer seeing (1.5-4")

Night time conditions: $r_0 = 10-25$ cm

Period/Site	EAM	LAM	EPM	LPM	All Days
AprJun.					
Big Bear	6.57	6.64	5.85	4.45	6.21
Haleakala	5.04	2.79	2.42	3.57	3.03
La Palma	5.49	3.48	3.17	3.42	3.65
Panguitch Lake	4.08	3.87	3.51	3.14	3.77
Sacramento Peak	4.86	2.65	1.93	2.13	2.40
San Pedro Martir	4.37	2.99	2.54	3.09	3.00
TUG	5.55	4.28	4.63	_	4.89
Jul. – Sep.					
Big Bear	6.34	7.13	6.50	4.93	6.45
Haleakala	5.40	3.12	2.71	3.53	3.33
La Palma	5.47	3.55	3.22	3.72	3.73
Panguitch Lake	4.15	3.63	2.92	3.53	3.59
Sacramento Peak	5.16	2.65	2.05	2.19	3.13
San Pedro Martir	3.91	2.66	2.19	2.42	2.73
TUG	5.36	3.16	2.65	2.83	3.56
Oct. – Dec.					
Big Bear	5.28	6.61	5.71	5.44	5.93
Haleakala	5.86	3.58	2.74	3.38	3.57
La Palma	4.08	2.90	2.66	3.20	2.96
Panguitch Lake	2.48	2.88	2.79	2.75	2.77
Sacramento Peak	4.90	2.96	2.20	2.58	2.72
San Pedro Martir	_	_	_	_	_
TUG	6.95	6.40	5.15	4.73	6.12

Ozisik et al. (2004)

- Day-time vs. night-time: atmosphere
 - Poorer seeing
 - Strong, rapid fluctuations

Big Bear Solar Observatory

Marino et al. (2004)

Verdoni et al. (2007)

- Day-time vs. night-time: atmosphere
 - Poorer seeing
 - Strong, rapid fluctuations
 - Chromatic anisoplanatism

- Day-time vs. night-time: atmosphere
 - Poorer seeing
 - Strong, rapid fluctuations
 - Chromatic anisoplanatism
- Importance of surface layer
 - Elevate telescopes!
 - Potentially large θ_o

- Day-time vs. night-time: atmosphere
 - Poorer seeing
 - Strong, rapid fluctuations
 - Chromatic anisoplanatism
- Importance of surface layer
 - Elevate telescopes!
 - Potentially large θ_o
- Observations conducted in the visible
 - All turbulence factors are (much) worse!

- Good night-time sites are good day-time sites
 - e.g., Haleakala site selected for upcoming ATST
- Solar telescopes are "small" (currently: D ≈ 1m;
 ATST: D ≈ 4m)
 - Not light-starved!
 - Compensates for small r_o and short λ
 - Still, high number of actuators needed for good correction: $N_{act} \approx (D/r_0)^2 \approx 100s$ even for D = 1m

AO for solar astronomy

- Day-time vs. night-time: guide star
 - The Sun is an extended source (~32')
 - Sunspots (~15"), not everywhere on the surface
 - Low contrast, fast-changing surface granulation (~1")

Basics of a solar AO system

- Basic AO set-up is very similar to night-time AO
 - Shack-Hartmann sensor
 - Matrix reconstruction
 - Piezoelectric, continuous facesheet DM
 - Woofer-tweeter setup
- Other setups exist

Wavefront sensing

- S-H WFS normally relies on a reference target that is bright and small
 - Works with well-contrasted sunspots and pores
 - Severe limitation in "Sun coverage"
- More useful is the granulation, but it is low contrast (~2% at best) and short-lived (≈1 min)
- "Derivative focal mask" is a generalization of Foucault's knife-edge for extended source

Wavefront sensing

 The most advanced WFS technique uses a correlating S-H sensor (more CPU demanding!)

Wavefront sensing

- The most advanced WFS technique uses a correlating S-H sensor (more CPU demanding!)
 - Potentially useful in many other settings: better noise properties and deals with extended source
- Solar AO has a significant potential gain in using phase diversity WFS
 - Complex, extended illuminating source
 - Turbulence varies much faster than object itself
 - Severe requirements for real-time processing

For more on the topic

- Great review of science drivers, history, technical implementation and future of the solar AO field:
 - Rimmele & Marino (2011)

Next week readings

- Laser guide stars in astronomy
 - Foy & Labeyrie (1985)
 - Happer et al. (1994)
 - Tyson's book (§3.3)
- AO for biological microscopy (J. Kubby's remote presentation)