
227

Publications of the Astronomical Society of the Pacific, 111:227–237, 1999 February
q 1999. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

Combining Undersampled Dithered Images

Tod R. Lauer

National Optical Astronomy Observatories,1 P.O. Box 26732, Tucson, AZ 85726; lauer@noao.edu

Received 1998 October 23; accepted 1998 November 18

ABSTRACT. Undersampled images, such as those produced by the HST WFPC-2, misrepresent fine-scale
structure intrinsic to the astronomical sources being imaged. Analyzing such images is difficult on scales close
to their resolution limits and may produce erroneous results. A set of “dithered” images of an astronomical source
generally contains more information about its structure than any single undersampled image, however, and may
permit reconstruction of a “superimage” with Nyquist sampling. I present a tutorial on a method of image
reconstruction that builds a Nyquist superimage from a complex linear combination of the Fourier transforms of
a set of undersampled dithered images. This method works by algebraically eliminating the high-order satellites
in the periodic transforms of the aliased images. The reconstructed image is an exact representation of the data
set with no loss of resolution at the Nyquist scale. The algorithm is directly derived from the theoretical properties
of aliased images and involves no arbitrary parameters, requiring only that the dithers are purely translational
and constant in pixel space over the domain of the object of interest. I show examples of its application to WFC
and PC images. I argue for its use when the best recovery of point sources or morphological information at the
HST diffraction limit is of interest.

1. INTRODUCTION

It is nice to work with well-sampled astronomical images.
A well-sampled image can be readily resampled to various
scales, orientations, or more complex geometries without loss
of information. Its spatial resolution is well understood, per-
mitting a clear analysis of the relative contributions of infor-
mation and noise. Further, many image-processing algorithms
will only work on well-sampled data. In some cases, however,
it is not practical or even desirable to obtain well-sampled
images. Given detectors with a finite number of pixels and
significant readout noise, one may prefer to trade off resolution
for increased field size or photometric sensitivity. Both con-
siderations were central to the design of the HST WFPC-1 and
WFPC-2 cameras, both of which are examples of instruments
that produce undersampled astronomical images. WFPC-2 in
particular has generated the largest library of high-resolution
optical astronomical images to date, but ironically the severe
undersampling in the WFC system, and the still less than critical
sampling of the PC at all but the reddest wavelengths, limit
the resolution of HST observations as much as the telescope
optics themselves.

There is no magic that can undo the undersampling in a
single image; analysis of such data always requires respect for
their peculiarities. At the same time, it may be possible to obtain

1 The National Optical Astronomy Observatories are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative
agreement with the National Science Foundation.

additional observations with the same camera system that con-
tain information lost in the original images. For example, if
the camera can be offset by a fraction of a pixel over a sequence
of exposures, or “dithered,” one can observe how the structure
of objects in the image varies with respect to their positions
on the pixel grid and thus recover details not contained in any
single image. This suggests that one might construct a well-
sampled superimage from a set of undersampled, but dithered,
images.

In general, when the size of a pixel is important with respect
to the intrinsic point-spread function (PSF), the image as ob-
served is

I(x,y) 5 O(x,y) ∗ P(x,y) ∗ P(x,y), (1)

where O is the intrinsic projected appearance of the astronom-
ical field being imaged, P is the PSF owing to the telescope
and camera optics, P is the spatial form of the pixel itself
(which is often assumed to be a uniform square, although this
need not be the case), and means convolution. Both P and∗
P limit the resolution of I and thus implicitly specify the min-
imum sampling requirements—a dilemma if P is too big, since
it sets what the sampling really is, regardless of what is needed.
If the astronomical scene and camera are time stable, however,
dithering the camera allows proper sampling of the field con-
volved with the pixel response as well as the PSF, to be obtained.
If the camera is pointed on a fine and regular grid ofn # n
subpixel steps, where n is the number of substeps within the
original large pixel, then the images can be simply interleaved
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into a superimage that has small pixels equal to the dither step
size. If the step size is small enough, the superimage will be
critically sampled. A simple way to view this is to consider an
image consisting of the astronomical field just convolved with
the PSF due to the optics alone. The sampling would be done
on pixels equal to the size of the dither step, chosen to be fine
enough to ensure critical sampling. The image is then blurred
by the original pixel response. Drawing every nth pixel in x
and y clearly recreates one of the dithered images as actually
created by the camera. Therefore, conversely interleaving the
dithered images creates the well-sampled superimage.

In practice, however, it may not be possible to step the cam-
era in a regular pattern. Subpixel dithers have been used in
many WFPC-2 programs, for example, but were often not ex-
ecuted with enough precision to fall on a regular pattern; simple
interlacing of the image set cannot be done in such cases. This
problem is critical for the Hubble Deep Field (HDF) obser-
vations (Williams et al. 1996). A regular dither was specified,
but did not actually occur.

To solve the problem of combining images with an irregular
dither pattern, a Drizzle algorithm was developed (Williams et
al. 1996; Fruchter & Hook 1999) that works by simply dropping
or “drizzling” the pixels in any single image onto a finer grid,
offsetting the image by the actual subpixel step obtained, slicing
up its pixels as they fall on the finer grid. The Drizzle algorithm
works well, producing the now famous well-sampled full-color
image of the HDF. The Drizzle algorithm is appealing, as it is
intuitive—one is just shifting and overlapping the images on
a fine grid, shrinking the original pixels small enough so as to
minimize any blurring associated with forcing the pixels into
the new grid but keeping them big enough so that there are no
“holes” of empty data in the new super image. Further, because
Drizzle works in the spatial domain, it is easy to correct for
cosmic-ray events, hot pixels, or any other data missing in any
single images, as well as correcting for any geometric distor-
tion. Development of Drizzle represents a significant improve-
ment in the software available to astronomers for analyzing
undersampled images and has greatly improved the recovery
of information from HST images.

Despite the success of Drizzle, however, it is frankly justified
on intuitive rather than formal theoretical grounds and indeed
depends on two ad hoc parameters, namely the spacing of the
superimage grid and the size of the pixels to be drizzled. It
also introduces its own blurring function, which statistically′P ,
is about the size of the superimage pixel; in detail, the actual
resolution for any object depends on how it falls with respect
to the final grid. Although in practice may be much smaller′P

than it still may be large compared to the PSF and introduceP,
significant blurring in its own right. Last, in general, there is
no guarantee that the Drizzle-reconstructed image will be
Nyquist-sampled. These issues were indeed discussed in the
context of the HDF and limit its deconvolution or interpretation
of its power spectrum on the finest scales.

In attempt to develop an algorithm that both mines better

resolution from the data and stands on a solid theoretical foun-
dation, I present a method that reconstructs a superimage from
an arbitrary set of dithered observations with no degradation
of resolution. This method is only a modest extension to two-
dimensional data of a method for recovering one-dimensional
functions from undersampled data presented by Bracewell
(1978, p. 201–202). The method works by computing the
Fourier transform of the superimage as a linear combination
of the transforms of the individual images; the aliased com-
ponents are eliminated algebraically. I have also extended the
method to estimate the superimage when it is actually over-
determined by the dithered observations. None of this is par-
ticularly complex, and not surprisingly, the professional image
processing literature already contains discussions of this
method (see Tsai & Huang 1984 or Kim, Bose, & Valenzuela
1990). However, given the strong interest in using dithers in
the context of HST imaging, I considered it worthwhile to
present this paper as a tutorial on the method of Fourier al-
gebraic reconstruction and explore its use in the context of HST
observations.

2. THE THEORY OF RECONSTRUCTING AN IMAGE
FROM ALIASED DATA SETS

2.1. The Sampling of a One-dimensional Function

To understand how to reconstruct an image from undersam-
pled data, I start by considering the effects of sampling on a
one-dimensional function, For reconstruction to work,f (x).

must be band-limited, so that its Fourier transform,f (x)

`

22pixuf (x) 5 F(u) 5 f (x)e dx, (2)E
2`

is nonzero only for where is the critical fre-2u ! u ! u , uc c c

quency. If x is expressed in terms of pixels, then sampling at
every integer pixel is sufficient provided that Thisu ! 1/2.c

can be understood by considering the Fourier transform of the
sampled function, The sampling of is equivalent to mul-f (x)
tiplying it by a shah-function,

1`1 n
III(ax) { d x 2 , (3)O ( )FaF an52`

where for the specific case of integer pixel sampling.a 5 1
The Fourier transform of the sampled function is then

f (x) 7 III(x) 5 F(u) ∗ III(u),

1`

5 F(u 2 n), (4)O
n52`

where I have used the fact that the transform of a shah-function
is itself a shah-function. As is well known, the Fourier trans-



COMBINING UNDERSAMPLED DITHERED IMAGES 229

1999 PASP, 111:227–237

Fig. 1.—Schematically representation of the effects of sampling on the
Fourier power spectrum of a continuous one-dimensional function. Sampling
causes the power spectrum to be periodic, with the period inversely propor-
tional to the spatial sampling frequency. When the function is well sampled,
the satellites occur at intervals of or greater, where is the critical2u , uc c

frequency, or the highest frequency at which the intrinsic function has nonzero
power (upper graph). With coarser sampling, the function becomes undersam-
pled and the satellites begin to overlap. With 2# undersampling (bottom
graph), the satellites occur at every integer multiple of The total transformu .c

(dotted line) is the sum over all satellites and is severely aliased.

form of a sampled function is periodic, repeating over the entire
frequency domain. If is band-limited, however, none off (x)
the copies or satellites of overlap. The satellites are spacedF(u)
at each integer step in but the requirement that meansu, u ! 1/2c

that they also reach zero before crossing over the midpoint of
the interval (Fig. 1). This condition is no longer obeyed when
the sampling interval is larger than each integer pixel step. For
example, if every other pixel is sampled, then

x
f (x) 7 III 5 F(u) ∗ III(2u),( )2

1`
n

5 2 F u 2 . (5)O ( )2n52`

The transformed shah-function now samples at every
half-integer step in the Fourier domain, causing strong overlaps
or aliasing between the satellites of (Fig. 1). If isF(u) f (x)
unknown, the full extent of its transform cannot be deduced
from the aliased sample, which in turn means that the sample
is itself an incomplete representation of f (x).

2.2. Recovery of a One-dimensional Function

Bracewell (1978, p. 201–202) shows that a function can be
recovered from collection of undersampled data sets given prior
knowledge of (as might exist given a detector pixel shapeuc

and optical point-spread function), provided that the sampling
among the various data sets is interlaced by some fraction of
the sampling interval and that the basic sampling interval is
not too sparse compared to . Consider again the alternateuc

pixel sample above, which I relabel as . For the funda-d (x)0

mental interval 21/2 ! u ! 1/2,

x
D (u) 5 f (x) 7 III ,0 ( )2

1 1 1
5 F u 2 1 F(u) 1 F u 1 . (6)[ ]( ) ( )2 2 2

Since I have specified that is band-limited toF(u) FuF ! 1/2,
for 0 ≤ u ! 1/2,

1 1
D (u) 5 F u 2 1 F(u) , (7)[ ]0 ( )2 2

and for 21/2 ! u ! 0,

1 1
D (u) 5 F(u) 1 F u 1 . (8)[ ]0 ( )2 2

Now let there be a second data set that also samples withf (x)
alternate pixel spacing but spatially offset from the sam-d (x)0

ples by some (one might presume but thisx ( 2n 0 ! x ! 2,0 0

is not required). The transform of the new data set, isd (x),x0

x
D (u) 5 f (x) 7 III 2 x ,x 0( )0 2

x
5 F(u) ∗ III ∗ d(x 2 x ) ,0( )[ ]2

22piux0( )5 F(u) ∗ III 2u 7e . (9)[ ]

This reduces to

1 1
2pix0D (u) 5 F(u) 1 e F u 2 , 0 ≤ u ! 1/2, (10)[ ]x0 ( )2 2

1 1
1pix05 F(u) 1 e F u 1 , 2 1/2 ! u ! 0. (11)[ ]( )2 2

Note that is no less aliased than is but since thed (x) d (x),x 00

overlap portion has a differing phase, the transforms of the two
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Fig. 2.—Schematic representation of the configuration of the Fourier domain
for reconstructing an image with subsampling. For real images, Fourier2 # 2
transforms need only be calculated for the semiplane with 0 ≤ u ≤ 1/2,

(this presumes that the x-axis transform is computed first),21/2 ! v ≤ 1/2
where the frequencies are defined with respect to the pixels of the reconstructed
image. Each image in the observed set is aliased, and has satellites at all
integer multiples of in the Fourier domain, with each satellite(u,v) 5 1/2
having significant power over and about its centralDu 5 51/2, Dv 5 51/2
location. The figure shows as heavy dots the central location of all satellites
that overlap with the fundamental transform centered at Algebraic(u,v) 5 0.
elimination of the satellites is done in two regions, marked 1 and 2; the satellites
that contribute to a given region are those at its corners.

samples can be combined to solve for the transform of f (x),

2pix0D (u) 2 e D (u)x 00F(u) 5 2 , 0 ≤ u ! 1/2, (12)
2pix01 2 e

1pix0D (u) 2 e D (u)x 005 2 , 2 1/2 ! u ! 0. (13)
1pix01 2 e

In other words, one can reconstruct exactly from two dataf (x)
sets offset from each other, each undersampled by a factor of
2. Note that in the special case, where holds thex 5 1, d (x)0 0

even-numbered pixels and holds the odd-numbered ones,d (x)x0

then

F(u) 5 D (u) 1 D (u), (14)x 00

as would be expected, since the sum in equation (4) can clearly
be separated this way. With exact interlacing, one can just add
the transforms of the two individual data sets (provided that
the transform preserves their relative phases).

2.3. Recovery of an Image

This method can be directly generalized to the case of re-
constructing a two-dimensional image. The shah-function be-
comes a two-dimensional regular grid of d-functions, and the
two-dimensional Fourier transform of an image is

` `

v2(2pixu12piy )f (x,y) 5 F(u,v) 5 f (x,y)e dx dy. (15)E E
2` 2`

If there is an observation that is a factor of 2 under-d (x,y)x ,y1 1

sampled in both x and y (thus having one-fourth of the pixels
of the critically sampled image) and offset by from thex , y1 1

nominal grid defining then in the domainf (x,y), 0 ≤ u !

1/2, 0 ≤ v ! 1/2,

1 1
2pix1D (u,v) 5 F(u,v) 1 e F u 2 ,vx ,y1 1 ( )[4 2

1 1 1
2piy 2pi(x 1y )1 1 11e F u,v 2 1 e F u 2 ,v 2 . (16)( ) ( )]2 2 2

There are analogous expressions in the other three quadrants
of the plane; however, for real-valued images, half of theu,v

plane will simply be the complex conjugate of the otheru,v
half and thus need not be computed (see Fig. 2). As can be
seen, with four data sets, each having a unique offset in x or

it is again possible to eliminate the overlap contributions.y,
This requires solving a system of equations with complex co-

efficients:

2pix 2piy 2pi(x 1y )1 1 1 11 e e e
2pix 2piy 2pi(x 1y )2 2 2 21 1 e e e

F 5 D, (17)2pix 2piy 2pi(x 1y )3 3 3 31 e e e4 ( )
2pix 2piy 2pi(x 1y )4 4 4 41 e e e

where F is a 4-vector holding in the first position, fol-F(u,v)
lowed by the and last satellites, and D is a 4-vectoru, v, u,v
of the transforms of the four undersampled data sets. One can
then invert this matrix to find

4

F(u,v) 5 c D (u,v), (18)O n x ,yn n
n51

where will be a complex coefficient. Solution for the secondcn



COMBINING UNDERSAMPLED DITHERED IMAGES 231

1999 PASP, 111:227–237

quadrant is analogous—the phases differ only in sign, being
positive when the domain of the frequency is negative. As an
example, for the special case of where the four data sets contain
the exact interlaces of integer pixels in x and F and D arey,
more simply related as

1 1 1 1
1 1 21 1 21

F 5 D, (19)
1 1 21 214 ( )
1 21 21 1

which has the solution, as expected of

4

F(u,v) 5 D (u,v). (20)O x ,yn n
n51

2.4. Recovery of an Image Overdetermined by the Data

Four images determine exactly, but if one actuallyF(u,v),
has additional images available, is overdetermined, andF(u,v)
a least-squares solution is required. This means finding the

that minimizes the normF(u,v)

E 5 kFF 2 Dk, (21)

where, as above, is the matrix of phases. In this case, how-F

ever, is now an matrix,F n # 4

2pix 2piy 2pi(x 1y )1 1 1 11 e e e
2pix 2piy 2pi(x 1y )2 2 2 21 1 e e e

F 5 , (22)_ _ _ _4 ( )
2pix 2piy 2pi(x 1y )n n n n1 e e e

where is the number of data sets, and D is now a vectorn ≥ 4
of length n holding the data sets; F is still the same 4-vector.
Expanding equation (21) gives

2 H( ) ( )E 5 FF 2 D FF 2 D
H H H H H H5 F F FF 2 F F D 2 D FF 1 D D, (23)

where H denotes the Hermitian (or complex-conjugate) trans-
pose. Minimizing E implies

H 21 H( )F 5 F F F D. (24)

In the case of an overdetermined situation, one might further
want to weight the observations differently. For example, it
may not be practical to obtain exposures of identical length
over the sequence of observations, or they may have variable
backgrounds. In this case, it is easy to generalize equation (24)

to include weighting, giving

H T 21 H T( )F 5 F W WF F W WD, (25)

where is an matrix of weights and is its transposeTW n # n W
(the weights are real-valued). can account for any covarianceW
between the images, but it is most likely to be diagonal on the
presumption that the individual images will probably be
independent.

2.5. Generalization to Higher Degrees of Subsampling

Double sampling is likely to be sufficient to remove modest
aliasing, but higher levels of subsampling may be required
when the undersampling is severe. Generalization to finer levels
of subsampling is straightforward, if somewhat tedious. As the
observed images become coarser with respect to the recon-
structed image, the aliased satellites become closer together
and overlap more severely. Algebraic elimination of the sat-
ellites requires identifying all satellites contributing power to
a given location in the Fourier domain. In practice, this means
slicing the Fourier domain into an increasingly large number
of subsets. Figure 3 sketches out the structure of the Fourier
domain for subsampling. In the case, the Fourier3 # 3 3 # 3
domain is divided into six regions, with nine differing satellites
contributing to F in each one; at least dithered imagesn ≥ 9
will be required to find a solution, and is will now be anF

matrix. An important distinction between the andn # 9 2 # 2
cases is that in the former, since the satellites are spaced3 # 3

exactly by only the six satellites that are visible within theu ,c

Fourier semidomain need be considered. In the case, the3 # 3
satellites are separated only by multiples of ; thus, the2u /3c

first set of satellites with their centers actually falling outside
the semidomain will still overlap with it.

3. IMPLEMENTATION OF THE FOURIER IMAGE
RECONSTRUCTION

3.1. Data Set Requirements

The present reconstruction method works only if the data
satisfy a number of conditions, the most important of which
is that the intrinsic image structure remain constant over the
extent of the dithered data-taking sequence. The PSF should
not vary significantly in time, or if the dither steps are large,
in space as well. “Significantly” in this context means variations
on spatial scales where the Fourier S/N ratio is greater than
unity; bright point sources are more vulnerable to PSF varia-
tions than faint or more diffuse sources. Bright noise spikes,
hot pixels, cosmic-ray hits, or any other variable sources must
also be eliminated or repaired prior to reconstruction. A final
obvious requirement is that reconstruction can work only on
the portions of the dither set in common to all images; as the
dither takes place, it is likely that a larger region of the sky
will be imaged than is present on any single image—subimages



232 LAUER

1999 PASP, 111:227–237

Fig. 3.—As for the case, this figure schematically shows the config-2 # 2
uration of the Fourier domain for reconstructing an image with sub-3 # 3
sampling. Again, the Fourier transforms are calculated only for the semiplane
with Satellites now occur at all integer multiples0 ≤ u ≤ 1/2, 21/2 ! v ≤ 1/2.
of but each satellite still has significant power over(u,v) 5 1/3, Du 5 5

and about its central location. The figure shows as heavy dots1/2, Dv 5 51/2
the central location of all satellites that overlap with the fundamental transform
centered at Algebraic elimination of the satellites is now done in(u,v) 5 0.
six regions; the satellites that contribute to a given region are the one at its
center, and the eight surrounding it.

of the common overlap region must be isolated prior to
reconstruction.

The mathematics of the Fourier reconstruction method do
not strictly require that the angular size of the pixels be constant
over the extent of any image, provided that the dither steps are
small enough that they can be regarded as constant over the
complete area of the images. Images that have variations in
their pixel scale large enough so that the amplitude of the
dithers (in pixels) varies significantly over the extent of the
image must be processed in subsets small enough that the dith-
ers can be regarded as constant over the angular domain se-
lected. Last, the dithers must be translational only, with no
rotation.

The reader familiar with Drizzle may object that these re-
quirements are too restrictive for many sets of dithered data.
Drizzle performs cosmic-ray event and defect rejection, as well
as geometric rectification, when building a subsampled image.
Drizzle is thus attractive for the complete reduction of pano-

ramic data sets. This issue will be discussed further in § 4, but
I emphasize that the present approach is concerned solely with
the specific task of accurate reconstruction of a
Nyquist-sampled image. Geometric rectification or defect re-
jection are problems that can be separated from the actual re-
construction algorithm; the caveats presented above do not nec-
essarily prevent use of the present method if they can be
addressed apart from the reconstruction task.

Two other requirements on the data set concern the pattern
and measurement of the dithers. Ideally, the fractional portion
of the dither steps (that is, ignoring the integer number of pixels
stepped over) should match the nominal or equal2 # 2 3 # 3
substepping patterns as closely as possible or, if the problem
is heavily overdetermined, be at least evenly spread over the
area of a single pixel. In this case, solution of equation (25)
will generate a set of complex coefficients, of nearly equalcn

power (presuming equal weights). Formally, solutions can be
calculated for any nondegenerate dither pattern; however, as
the dither pattern moves away from optimal, the images will
be combined unevenly, with heavy weight being placed on
those with less redundant positions. For real images, this means
that the relative noise contributed by such images will be am-
plified compared to others in the dither set. Noise properties
of the reconstructed image will be discussed below; in practice,
excess amplification of noise is only important for large de-
partures from an ideal pattern.

Accurate measurement of the dither steps is required to con-
struct the F matrix. This may be done iteratively. Initially one
might use simple centroids of stars or other compact objects
within a given image to measure dither offsets. Once a recon-
structed image has been generated, it can be cross-correlated
with the individual images to refine the offsets, permitting a
more accurate reconstruction to be done in a second iteration.

3.2. Computing the Reconstructed Image

Given the prepared set of dithered images and measured
dither steps, computation of the reconstructed image can pro-
ceed. In practice I have done this within the Vista image-
processing system, making use of its native image arithmetic
and Fourier routines, augmenting it only with a new subroutine
to construct and then solving for and appling to the FourierF, cn

transform of a given image.
For each image, the first steps are to normalize it to a com-

mon exposure level, and to then expand it into a sparse array,
spacing out the pixels by 2# or 3# as desired. Each pixel in
an input image then occupies one of the corners of a cell of

or new pixels in the expanded image, with the2 # 2 3 # 3
other pixels in each cell set to zero. This actualizesn # n 2 1
each image as a sparse III function; one can see that for exact

dithers, the other images would simply be interlaced atn # n
the vacant locations.

Once an image is expanded, its Fourier transform is com-
puted; a power spectrum at this stage clearly shows the aliased
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Fig. 4.—Reconstruction of the HST PC PSF with subsampling is shown based on 20 dithered F555W images of a star in q Cen. The image at left shows2 # 2
a linear stretch of one of the PSF images (selected to be nearly centered on a pixel). The central image shows the reconstructed PSF with the same intensity
stretch. The last image is a logarithmic stretch (with dynamic range 3.5 in log units) of the reconstructed PSF.

Fig. 5.—Reconstruction of the HST WFC PSF with subsampling is shown based on 20 dithered F555W images of a star in q Cen. The image at left3 # 3
shows a linear stretch of one of the PSF images (selected to be nearly centered on a pixel). The central image shows the reconstructed PSF with the same intensity
stretch. The last image is a logarithmic stretch (with dynamic range 3.5 in log units) of the reconstructed PSF.

satellites. The next step is to multiply the transform by ,cn

remembering that different coefficients must be used for the
various regions within the domain. The adjusted transform is
then added to the adjusted transforms of the other images. The
reconstructed image is the inverse transform of the complete
sum.

One important caveat is that each the transform of each image
must be multiplied by a complex phase, exp [22pKi (x 1j

where is its spatial offset from the average of they )] , (x ,y )j j j

other images and K is the degree of subsampling. This is re-
quired because the mathematics presented in the previous sec-
tion presume a two-dimensional coordinate system anchored
to the sky, rather than the grid of the detector. In other words,
as each image is expanded, initially its III function has identical
coordinates to those in the other images, with the object ap-
parently moving with respect to the detector coordinate system.

This step resets the coordinate system to that of the sky, cor-
rectly phasing the various III functions of the dither set.

3.3. Examples of Reconstructed Images

Figures 4 and 5 show PC and WFC PSFs reconstructed from
a calibration program of 20 F555W dithered images of a field
within the q Cen globular cluster. The PC PSF was recon-
structed with subsampling, while subsampling2 # 2 3 # 3
was used for the WFC PSF. The cores of the PSFs are now
well resolved, and no “boxy” artifacts are seen as can occur
in Drizzle reconstructions (Fruchter & Hook 1999). It is also
worthwhile to note the strong blurring introduced by the WFC
pixel function, itself. Again, the reconstruction does notP,
recover the intrinsic PSF due to the optics only but also the
intrinsic PSF convolved with The PC PSF clearly has theP.
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sharper and rounder core, while the center of the WFC PSF is
strongly determined by the pixel shape.

Figures 6 and 7 show the power spectra at various stages in
the reconstruction of the WFC PSF to illustrate the algorithm
concretely. The final combination of 20 images has reduced
the contribution of the aliased satellites by ∼105. The final
power spectrum also ratifies the strong contribution of the WFC
pixel to the total PSF. The shape of the spectrum is clearly
boxy; further, the central lobe is surrounded by a strong zero,
which would be expected in the power spectrum of a nearly
square and uniform pixel function.

Turning to more interesting objects, Figure 8 shows the
reconstruction of the nucleus of the early-type galaxy2 # 2

NGC 1023. Unlike the situation for the PSFs, which were
highly overdetermined, only five dithered images were avail-
able for NGC 1023. The dither pattern was close to a nominal
exact interlace, but the offsets typically differed from the nom-
inal 0.5 pixel by ∼0.1 pixel; thus, the present method was
required. This galaxy has a particularly compact center (Lauer
et al. 1995). The present observations were obtained to observe
its central structure with the best resolution availa-
ble—reconstructing the image without introducing additional
blurring is thus critical. The reconstructed image clearly shows
the sharp compact nucleus of NGC 1023 but is also smooth
and free from artifact; indeed this image can now be processed
further with PSF deconvolution.

Last, I show a reconstruction of a chain galaxy at2 # 2
(Cohen et al. 1996) in the Hubble Deep Field (Fig.z 5 1.355

9), along with a Drizzle reconstruction.2 Superficially the two
images look identical; the gross morphology is not strongly
dependent on the reconstruction algorithm. Detailed compari-
son shows, however, that the present reconstruction is slightly
sharper—the peak of the brightest knot in the image is ∼7%
brighter, for example. Matching the resolution of the Drizzled
image requires smoothing the Fourier reconstruction with a
Gaussian with pixel (on the subsampled scale).FWHM ≈ 1
The Fourier reconstruction does appear to have more noise,
but again this is due to the smoothing inherent in the Drizzle
algorithm. The Fourier reconstruction can be smoothed, but
one of the nice things about having a well-sampled image is
that optimal filters can be used to improve its appearance. A
Wiener filter (Wiener 1949), for example, can be used to reject
much of the noise in the present image with little effect on its
resolution, an option that is not possible with aliased images.

A more general comparison of the present method to Drizzle
is complex, as the difference between the two depends on the
dither pattern, the size of the image set, choice of the recon-
structed pixel size, and the Drizzle drop size. For example,
when the dither pattern is close to an exact interlace, Drizzle

2 The Drizzle reconstruction shown was done with the same image set,
weights, and pixel grid used for the Fourier reconstruction, and differs from
the Drizzle-reconstructed image of the same galaxy in the official release of
the HDF.

can be configured to produce a simple interlaced reconstruction,
while at the opposite end of the scale, Drizzle can do simple
“shift-and-add” reconstructions on the original pixel scale,
which implies highly significant smoothing. In general, it ap-
pears from a number of additional experiments that when a
large image set is available, Drizzle effectively smooths a per-
fect reconstruction with a Gaussian with width of about 1 pixel,
as in the HDF galaxy above. For WFC PSFs, for example, the
blurring can cause a 10% reduction in the flux of the central
pixel. This is not guaranteed, however; in one WFC PSF ex-
periment with only four nearly exactly interlaced images, Driz-
zle produced a result that was apparently sharper than the
Fourier reconstruction. Close examination, however, showed
that the Drizzle result was still aliased; aliasing can cause fea-
tures to be artificially sharpened as well as broadened. Further
comparison of the Fourier method to Drizzle is thus best done
in a context specific to the scientific problem at hand.

3.4. Noise in the Reconstructed Image

As alluded to in § 3.1, the noise level in the reconstructed
image depends on how well the dither pattern matches an ideal
interlace pattern. For N images, the solutions presented in equa-
tions (24) or (25) reduce to a set of complex coefficients

relating to the data, as in the exact solution shown{c } F(u,v)n

in equation (18). On the presumption that the noise from image
to image is uncorrelated, then the average power in noise in
the reconstructed image is simply

N 1/2

∗ 2h 5 c c h , (26)O( )F n n n
n51

where is the noise power in image With a nearly idealh n.n

dither pattern (and equally weighted data), ∗ 1/2 2(c c ) ≈ K /N,n n

where K is the degree of subsampling; the noise level is as
expected for the simple addition of N images. As the dither
pattern becomes less ideal, however, unequal weight is placed
on the images, depending on the uniqueness of their positions.
Highly redundant images will have small coefficients, while
more isolated images contribute relatively higher power. The
linear combination of the images still produces an exact so-
lution for the reconstructed image, but because the noise is
incoherent from image to image, it may be amplified in the
final image, relative to its level in the ideal case. Equation (26)
allows the noise in the reconstructed image to be calculated in
advance for any particular dither pattern.

Figure 10 shows how noise in the reconstructed image varies
as the dither pattern moves away from the ideal interlace for
two examples of subsampling. In these tests, variations2 # 2
in the pattern were treated as random Gaussian errors about
the exact interlace. For a given standard deviation of the random
offset, several simulated image reconstructions were computed.
For the example with only four images, there is no redundant
information, and the noise level depends strongly on the par-
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Fig. 6.—Power spectra are shown at various stages in the reconstruction of the WFC PSF with subsampling. The left-hand image shows the power3 # 3
spectrum of a single PSF image expanded as a sparse function. The low contrast of the minima between the bright peaks of the satellites shows the effects ofIII
the severe aliasing in WFC images. The middle image shows the spectrum of the penultimate reconstruction. At this stage, 19 of the 20 images have been combined
and the flanking satellites have been greatly reduced in power. The right-hand image shows the power spectrum of the final reconstructed PSF—the partial
combination shown in the middle has now been completed by the addition of the last image. The display scale is identical and logarithmic (with a range of 105)
for all three spectra. The power spectra are shown for the full Fourier domain for ease of visual interpretation, even though the transforms are computed only in
a semiplane.

Fig. 7.—Cuts along the u-axis of the power spectra (shown in the previous
figure) are plotted at various stages in the reconstruction of the WFC PSF with

subsampling. The dashed line shows the power spectrum of a single3 # 3
PSF image expanded as a sparse function. The dotted line shows theIII
spectrum of the penultimate reconstruction. At this stage, 19 of the 20 images
have been combined and the flanking satellites have been greatly reduced in
power. The solid line shows the power spectrum of the final reconstructed
PSF—the partial combination has now been completed by the addition of the
last image.

ticulars of the dither pattern once excursions from the exact
interlace become large. For nine images, the reconstruction is
more stable to departures from the ideal, the final noise level
showing smaller excursions. The real importance of this dem-
onstration, however, is to show that the noise level rises only
slowly above its ideal for small errors in the dither pattern.
Experience with WFPC-2, for example, shows that typical dith-
ering errors (&0.1 PC pixel) will give results within the regime
of modest noise amplification.

4. DISCUSSION AND SUMMARY

As noted in the Introduction, my interest in the Fourier re-
construction method presented here stemmed from a strong
desire to avoid the random blurring, that Drizzle may in-′P ,
troduce into the reconstructed image. The present method per-
mits exact reconstruction of the superimage, with no blurring
at the Nyquist scale, nor requires any arbitrary decisions or
parameters to control the form of the reconstructed image. One
might object that the degree of subsampling selected is such a
parameter; however, it is really specified by the intrinsic spatial
scale of the Nyquist frequency. A Nyquist-sampled image can
be resampled at finer scales without loss of information content
or introduction of artifact—images generated at various sub-
sampling scales past the Nyquist scale are essentially equivalent
representations of the image.

The present algorithm places several preconditions on the
data; thus, it is worthwhile to consider (1) the optimal data-
taking strategy and (2) how to best perform the related tasks
of artifact rejection, geometric rectification, and so on. The
mathematics of the Fourier method strongly recommends se-
lecting a dither pattern that contains fractional offsets as close
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Fig. 8.—Reconstruction of the center of NGC 1023 with subsampling. Five F555W PC images were used. Four of the images (left) define an approximate2 # 2
interlace pattern; however, the offsets typically differed from the nominal 0.5 pixel steps by ∼0.1 pixel (the fifth image falls within 0.1 pixel of one of the2 # 2

four images shown). The stretch is linear.

Fig. 9.—Two reconstructions of a chain galaxy in the Hubble Deep Field with subsampling, based on 11 F450W WFC images. The left-handz 5 1.355 2 # 2
image was done with the present Fourier method, while the image on the right is a Drizzle reconstruction. The stretch is linear.

to the ideal interlace pattern, itself. If a good dither pattern is
realized, little is demanded of the linear combination of the
images—one is simply accounting for the slight errors in its
execution. It should be emphasized that the dither pattern can
also contain integer pixel offsets as well, as might be desired
to eliminate hot pixels, traps, blocked columns, and other fixed
detector defects as well as cosmic rays. A nearly ideal program
for the present algorithm would be to attempt a sub-2 # 2
sampling interlace but taking multiple exposures at each dither

step to allow for cosmic-ray rejection. This strategy clearly
demands a rather large data set, which may not be feasible for
programs lasting only an orbit or two on HST; however, it
presents no difficulties for multiorbit programs, where one will
be obtaining a large number of exposures in any case.

With regards to the second issue above, I have focused solely
on the problem of reconstructing a Nyquist-sampled image.
Tasks that are required before this stage include image regis-
tration and defect repair. Tasks that might follow reconstruction
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Fig. 10.—Simulations of the relative amplification of noise as a function
of the departure of the dither pattern from a perfect interlace are shown. The
departure is parameterized as a normal distribution of random offsets with the
standard deviation specified in original pixels. The solid curve and points show
the case for when only four images are used in the reconstruction. The dashed
line and open symbols show the simulations done with nine input images.

include geometric rectification, deconvolution, and filtering.
Drizzle is attractive in part because it is a complete package
that does many of these steps together within the familiar IRAF/
STSDAS environment. This said, however, I emphasize that
many of the preliminary reduction steps can be done indepen-
dently of the Fourier reconstruction algorithm—these issues
should not impede its use. Indeed, one might use Drizzle for
an initial reconstruction to provide for defect rejection prior to
a second reconstruction cycle using the present algorithm. Geo-
metric rectification is simple in principle if one is working with
well-sampled images; the issue is generating such an image if
geometric distortions are important in the undersampled ob-
servations. As noted earlier, if the dithers are small, scale

changes across the image may be unimportant; if variations in
the local dither step over the image domain are limited to a
few percent of a pixel, then the entire domain may be recon-
structed and then later rectified. If the dither steps are large,
however, the fractional pixel offsets may vary significantly over
the image, requiring the reconstruction to be done in subsets
of the domain and later patched together. This may be unat-
tractive for some problems requiring panoramic imaging but
may be irrelevant if the primary objects of interest are compact
or occupy only small portions of the images.

While the Fourier reconstruction method presented here
works only for translational dithers, I note in passing that the
professional image-processing literature does contain algo-
rithms related to be present one that can combine undersampled
images with more complex geometric interrelationships.
Granrath & Lersch (1998) present an algorithm that constructs
a Nyquist-sampled image from an image set whose members
can be related to each other with affine transformations, i.e.,
the geometric transformations that include rotation, scale
change, and shear, as well as simple translations. The Granrath
& Lersch algorithm constructs a “projection-onto-convex-sets”
estimate that gives the best reproduction of the image set, in
contrast to the present method, which yields a closed-form
solution to the Nyquist image. Methods of this sort may be of
interest in cases where the image does not meet the conditions
required for the present Fourier method, but precise treatment
of the Nyquist scale is still important.

The Fourier technique presented here may not be the first
choice to construct a Nyquist image when the geometrical re-
lationships among the image set are complex or the dither
pattern is strongly nonoptimal. Further, its resolution gains may
appear to be superficially modest. There are HST imaging prob-
lems that push right against the diffraction scale of the instru-
ment. These include crowded field stellar photometry, the nu-
clear structure of galaxies—particularly those with bright
AGNs, the morphology of lensed QSOs, and so on. This
method allows clean access to the Nyquist scale and should be
of use for these problems and more.

I wish to thank Bobby Hunt, Christoph Keller, and Ken
Mighell for useful conversations.
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