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ABSTRACT

The direct detection of extrasolar planets by imaging means is limited by the large flux of light from the host star
being scattered into the region of interest by a variety of processes, including diffraction. Coronagraphs are devices
that suppress the undesirable scattering of light caused by diffraction. In a coronagraph the sensitivity limit for high
dynamic range is limited by the propagation of errors introduced by the imperfect optical system to the final image.
In this paper we develop theory and simulations to understand how such errors propagate in a coronagraph. We
describe the response of classical and band-limited Lyot coronagraphs to small and large errors in the placement of
the central star, and identify ways of making such coronagraphs more robust to small guiding errors. We also un-
cover features of the decentered point-spread function that can lead to the spurious detection of companions,
especially with aggressive, high dynamic range coronagraphs dedicated to companion searches aimed at finding
extrasolar terrestrial or Jovian planets.

Subject headinggs: instrumentation: adaptive optics — instrumentation: high angular resolution —
planetary systems — space vehicles — techniques: high angular resolution

1. INTRODUCTION

It is undesirable that the effect of edge diffraction from the
entrance aperture of a telescope results in the scattering of light
into regions of great interest for the study of the circumstellar
environment of stars. The purpose of coronagraphs is to select
or modify the spatial frequency content of the light to effect the
suppression of diffracted light in a desired manner. Discussion
of the theory of diffraction-limited stellar coronagraphs is typ-
ically limited to the on-axis point-spread function (PSF), often
with the assumption of perfect optics. In recent years there has
been an explosion of new concepts for coronagraphs, many of
which can achieve contrasts of 10�10, appropriate for Terres-
trial Planet Finder (TPF ) applications in the absence of phase
errors. A key question is the tolerance of coronagraphs to the
variety of imperfections that might be encountered in the real
world. Some previous studies have incorporated models of
phase errors (e.g., Malbet 1996; Sivaramakrishnan et al. 2001;
Green & Shaklan 2003), although these have not focused on
delivering insight into how the errors propagate to the final
image and how to design a more robust coronagraph at a con-
ceptual level.

Here we focus our initial analysis on the propagation of
tip-tilt errors in Lyot coronagraphs (Lyot 1939). A coronagraph
is an instrument that suppresses light in a specific position in
image space, and thus has a spatially variable PSF. The con-
nection between the tip-tilt of the wave front (or equivalently
the decentering of the focal plane stop) and the response of the
final image plane is important as an error source, and leads to

fundamental insight into, and understanding of, the operation of
a Lyot coronagraph.

A hard-edged (binary) Lyot coronagraph is remarkably tol-
erant of tip-tilt errors, even for very small focal spots. This is
curious, particularly given that one of the most scientifically suc-
cessful coronagraphs, the Johns Hopkins Adaptive Optics Co-
ronagraph (AOC; Golimowski et al. 1992), responsible for the
discovery of the first bona fide brown dwarf (Nakajima 1994),
incorporated a tip-tilt system. While it was envisioned that this
would improve the performance of the coronagraph, there is in
fact little benefit to the suppression of diffracted light, as shown
below. Also surprising is the counterintuitive result that a graded
or apodized focal plane spot is less sensitive to small tip-tilt er-
rors than a hard-edged coronagraph, despite the fact that more
light passes through the partially transmissive stop when the star
wanders off axis.

2. SECOND-ORDER MONOCHROMATIC
CORONAGRAPHIC THEORY

The phase on the telescope aperture is �(x), where x ¼
(x1; x2) is the location in the aperture, in units of the wavelength
of the light (see Fig. 1). The corresponding aperture illumina-
tion function describing the electric field amplitude and rela-
tive phase in the pupil is EA ¼ A(x)ei�(x) ¼ A(x)½1þ i�(x) �
�(x)2=2þ : : :�, whose Fourier transform, EB ¼ a(k) � ½�(k)þ
i�(k)� �(k) � �(k)=2þ : : :�, is the electric field in the image
plane B, where � is the two-dimensional Dirac �-function, k ¼
(k1; k2) is the image plane coordinate in radians, and * is the
convolution operator. Our convention is to change the case of
a function to indicate its Fourier transform.

We multiply the image field EB by a mask function M(k) to
model the image plane stop of the coronagraph. The image field
immediately after the stop is EC ¼ M (k)EB. The electric field in
the reimaged pupil following the image plane stop, ED, is the
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Fourier transform of EC. We use the fact that the transform of EB

is just the aperture illumination function EA itself:

ED ¼ m(x) � EA

¼ m(x) �
�
A(x)

�
1þ i�(x)� �(x)2=2þ : : :

��
: ð1Þ

If the Lyot pupil stop transmission is n(x), the electric field after
the Lyot stop is EE ¼ n(x)ED. The transform of this expression
is the final coronagraphic image field strength when the wave
front phasor is expanded as a power series in the phase �:

EF ¼ N (k) � ½M (k)EB�
¼ N (k) � (M (k)fa(k) � ½�(k)þ i�(k)�

�(k) � �(k)=2þ : : :�g): ð2Þ

Understanding high dynamic range Lyot coronagraphy hinges
on understanding the structure of the field strength ED in the
Lyot plane located at D.

3. GUIDING ERROR IN A LYOT CORONAGRAPH

The effect of small tip-tilt errors on a Lyot coronagraph op-
erating on a high Strehl ratio image is described by a truncated
version of equation (1). The mask function in a Lyot corona-
graph is best expressed asM (k) ¼ 1�W (k), whereW(k) is the
‘‘image stop shape’’ function. For a hard-edged stop W (k) ¼
�(Dk=s), where s is the image stop diameter in units of the res-
olution of the optical system. If the image plane stop is opaque
at its center,W (0) ¼ 1 [which constrainsw(x) to have unit area].
The Fourier transform of the stop functionM(k) ism(x) ¼ �(x)�
w(x), so the Lyot pupil electric field of a Lyot coronagraph can
be expressed as

ED ¼ ½�(x)� w(x)� �
�
A(x)

�
1þ i�(x)� �(x)2=2

��
ð3Þ

for sufficiently small phase errors (i.e., j�jT1) in the pupil.
Pure tip-tilt error is described by a phase function �(x) ¼ �x �
�1x1 þ �2x2 (� is in radians per wavelength in pupil space).
We require that the image displacement be much less than a
diffraction width, so j� jDT1. Following the method devel-
oped in Sivaramakrishnan et al. (2002), and truncating our ex-
pansion at the second order, we derive an analytical expression
for the Lyot pupil field (which is typically valid for Strehl ratios
of the order of 95% and above; Perrin et al. 2003):

ED ¼ ½�(x)� w(x)� � fA(x)½1þ i�x� (�x)2=2þ : : :�g: ð4Þ

ED is therefore the sum of a zeroth-order term

EL0 ¼ A(x)� w(x) � A(x); ð5Þ

a first-order term

EL1 ¼ if�xA(x)� w(x) � ½�xA(x)�g; ð6Þ

and a second-order term

EL2 ¼ �1
2

�
(�x)2A(x)� w(x) �

�
(�x)2A(x)

��
: ð7Þ

The behavior of these three terms is most easily understood
by following this analysis in the case of a band-limited Lyot
coronagraph (Kuchner & Traub 2002). We use a coronagraph
with an image plane stop shape function that possesses a
Fourier transform of w(x) ¼ �(x1=�; x2=�)=�

2, where � ¼ D=s
(s is of the order of a few to 10, and corresponds to the ‘‘size’’
of the image plane stop in units of k/D). This simplifies the
analytical calculations and brings out the salient features of the
manner in which tilt errors propagate through a Lyot corona-
graph. For a hard-edged focal stop, w(x) is a sinc function (see
Figs. 2 and 3). Once we are armed with a theoretical under-
standing of the expressions in equations (5), (6), and (7), we can
investigate the response of more common Lyot coronagraph
designs to guiding errors numerically and also start to address
how pupil apodization affects the way guiding errors degrade
dynamic range.
The zeroth-order term is well understood for Lyot coro-

nagraphs (e.g., Sivaramakrishnan et al. 2001 and references
therein), and is outlined in Figure 2.

3.1. First-Order Tip-Tilt Leak

The first-order term allows light through only at the edges of
an unapodized pupil. Such behavior is similar to the zeroth-
order term. The leaked light can be suppressed by the usual
undersizing of the Lyot stop. In order to see why this is true,

Fig. 1.—Essential planes and stops in a coronagraph. The entrance aperture is
A and the direct image at B falls on a mask whose transmission function isM(k).
The reimaged pupil plane D, after being modified by passage through a Lyot stop
with a transmission function n(x), is sent to the coronagraphic image at F.

Fig. 2.—One-dimensional representation of a perfectly aligned hard-edged
Lyot coronagraph. A band-limited stop with a top-hat function bandpass does
not have the ringing in the wings of the sinc function. There is no fundamental
difference between these designs for the purposes here, since w(x) has approx-
imately the same spatial scale for both. Compared to a hard-edged stop, apod-
izing the focal stop reduces the ringing in the sinc function, resulting in less light
bleeding into the center of the pupil.
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one must consider the value of the convolution of the ‘‘small’’
two-dimensional unit area top hat function w(x) with the func-
tion xA(x), as shown in Figure 3. Let us consider an x-tilt (by
setting�2 ¼ 0). If A(x) ¼ 1 inside the pupil, xA(x) is a flat plane
with slope �1 passing through the origin and containing the
x2 axis. The value of the convolution integral when the top-hat
function lies entirely within the support of the aperture is simply
the x1 value of the offset. Therefore, in the interior of the pupil
xA(x) ¼ w (x) � xA(x) ¼ x1. The electric field farther than � ¼
D=s from the pupil boundary is zero.

A hard-edged focal stop results in leakage of light into the in-
terior of the pupil from thewings of the sinc function (see Fig. 3 ).
A graded focal stop has a more compact Fourier transform than a
hard-edged stop. In this case the interior of the Lyot pupil, where
the field remains zero, is larger than that of the Lyot pupil of
a hard-edged coronagraph. This results in less sensitivity to tilt
error for the same Lyot plane stop geometry at high Strehl ratios,
even when the tilt errors are large enough to move the star into
regions of the focal stop with significant transmission.

3.2. Second-Order Tip-Tilt Leak Througgh

We apply similar logic to the second-order term. In the special
case of a clear pupil, and the same band-limited coronagraph,
the Lyot pupil electric field depends on the difference between
x21A(x) andw(x) � ½x21A(x)�. The convolution integral is no longer
the identity operator even when the top-hat function lies en-
tirely within the pupil support. There is a uniform residual field
strength approximately equal to �2

1�
2=8 everywhere in the in-

terior. There is also the same ‘‘bright edge’’ effect as is seen in the
zeroth- and first-order terms, but that is removed by the optimally
undersized Lyot stop. The uniform background in the pupil plane
from the second-order contribution of a pure tilt term causes a
‘‘ghostly PSF’’ to form on axis (not displaced) even with an op-
timized Lyot stop (see, e.g., Fig. 4). The energy in this PSF varies
as the fourth power of the (small) tilt error, and inversely as the
fourth power of the focal plane stop diameter. First-order effects
of defocus will affect the coronagraph in a similar way. It is the

combination of these ‘‘ghostly PSFs’’ with the real PSF of the
star that results in the distorted images shown in Figure 4.

4. THE POINT-SPREAD FUNCTIONS
OF A LYOT CORONAGRAPH

Up to this point we have concerned ourselves with small
(Tk /D) tip-tilt errors in Lyot coronagraphs. Here we lift that
constraint and examine the morphology of the PSF of a Lyot
coronagraph over a wide range of stellar locations relative to the
spot center.

We simulated the PSF of a coronagraph when a star is offset
from the center of the stop. These PSFs are illustrated in Figure 4
using a spot 8 k /D in diameter, although we studied both smaller
and larger stops. We found markedly different morphologies in
three regimes. When the star behind the spot is displaced a small
amount, the PSF looks similar to that of the perfectly aligned
coronagraph. The rows in Figure 4 show a sequence of locations
of the central star, beginning at the very center of the occulting
spot, with a Lyot stop diameter of 75% of the entrance aperture
diameter. When the star is within k /D of the spot edge, the PSF
develops outcrops that are not at the location of the star. When
the star is located at the very edge of the spot, or outside it, the
PSF takes on a typical direct image PSF shape.

The three rows of images in Figure 4 are the PSF in the first
focal plane, the Lyot pupil plane intensity, and the final co-
ronagraphic PSF and shown in radial profile. We note the ap-
pearance of the fake source located ~2 k /D from the star in the
coronagraphic PSF at a misalignment of 2 k /D. The manner in
which placement errors interact with higher order errors, such
as spherical aberration, has not been studied yet. This suggests
that PSF modeling of coronagraphic data should be performed
with care to avoid misinterpreting structure close to the spot
edge in the image (e.g., Krist et al. 1998; Krist 2004).

This exercise is relevant to coronagraphy on very high Strehl
ratio images, although it also has immediate applicability to
coronagraphic science carried out today, with theHubble Space
Telescope (HST ) ACS, for instance, if bright structures were
present behind the focal stop but near its edge.

Figure 5 shows coronagraphic rejection efficiency as a
function of tilt error for several focal plane stops. Typical coro-
nagraphic reductions of the best current space-based data dem-
onstrate that imperfect calibration data and temporal variations
in the PSF set the limits on dynamic range (Krist et al.1998), so
we avoid using simplistic estimates of dynamic range using
monochromatic simulations to evaluate the actual effects of tilt
errors. We use the fraction of transmitted central source light
as a metric of coronagraphic performance. We define the trans-
mittance of a coronagraph to be the integrated light in the final
focal plane, excluding the region inside the focal stop (weighted
by the focal stop transmission for the Gaussian case). This quan-
tity is directly related to the photon-limited noise, albeit quali-
tatively. We choose this quantity as a metric for the purposes
of this paper in preference to contrast, since it is independent
of the choice of an inner working angle for the coronagraph.
The transmittance of light is calculated for s ¼ 3, 6, and 9 k /D
focal stops, with a hard-edged Lyot stop undersized by 0:5 ; 1=s
of the pupil radius. A Gaussian apodized focal stop is compared
to the hard-edged focal stop. Since the Fourier transform of an
apodized stop is more compact, less light bleeds into the cen-
ter of the pupil (see Figs. 2 and 3). It is remarkable that the
Gaussian apodized stop is more efficient even in the presence
of quite large tilt errors. For example, a 3 k /D FWHM Gaussian
focal stop suppressesmore light than a 3 k /D diameter hard-edged
stop even at 0.7 k /D tilt (see Fig. 5), despite the transmission of

Fig. 3.—One-dimensional representation of the first-order leak due to tilt
error in a Lyot coronagraph (see eq. [6]). The effect of tilt is largely confined
to the edge of the pupil, which is already suppressed by an optimized Lyot
stop.
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Fig. 4.—Focal, Lyot plane, and final coronagraphic image intensities for a hard-edged Lyot coronagraph with varying degrees of tilt. The occulting spot is 8 k /D
in diameter and outlined in red in the focal plane images. The outline of the pupil and undersized Lyot stop are shown in red in the Lyot plane images. The outline of
the image of the focal stop is shown in red in the final coronagraphic image. In the final coronagraphic image, the position of the star in the image plane is marked
with a cross. If the star is behind the focal stop, the peak in the coronagraphic image does not correspond to the position of the star, leading to ‘‘fake sources.’’ The
radial profiles show the range from the mean to maximum intensity in an annulus centered on the center of the focal stop. The noncoronagraphic Airy pattern is
shown for comparison.



the stop being 10% at this radius. The remarkable robustness
of the classical Lyot coronagraph is apparent in Figures 4
and 6, contrary to the expectation that led Golimowski et al.
(1992) and Lloyd et al. (2001) to incorporate tip-tilt control
systems into Lyot coronagraphs. The leakage of light from
the central star remains concentrated close to the edge of the
image of the focal stop until the central star gets to within a

resolution element of the stop edge. This fact, combined with
its ease of manufacture and its broadband performance, makes
the Lyot coronagraph interesting even in the era of novel coro-
nagraphic designs, which must all be well understood in terms
of tolerance to the variety of errors that might exist in real
telescopes.

The comparison of Gaussian and hard-edge coronagraphs on
an equal footing is complicated by the definition of an appro-
priate equivalent width for the Gaussian stop and the under-
sizing of the Lyot stop. For the purposes of comparison, we
characterized the width of the Gaussian stop by � where the
transmission of the stop is 1� exp (�x2=2�2). We adopt the
convention of Sivaramakrishnan et al. (2001) and define a Lyot
tuning parameter F that defines the fractional radial undersiz-
ing of the Lyot stop in units of D/s (or D/�). For a hard-edged
Lyot coronagraph, F � 0:5 results in most of the performance
benefits of undersizing the Lyot stop, since the Lyot stop ex-
cludes the core of the w(x) sinc function around the edge of the
pupil. Further undersizing in this case results in relatively small
gains, since the wings of a sinc function decay slowly (this is
calculated in detail in Makidon et al. 2000). For a Gaussian
stop, however, the wings are suppressed, and gains continue
with further undersizing (see Fig. 7). The ultimate application
of such tapering of the focal stop to achieve the most compact
w(x) is the generalization to more arbitrary functions with the
concept of the Band Limited Coronagraph (Kuchner & Traub
2002). The rejection of such coronagraphs continues to im-
prove with the extremely aggressive undersizing of the Lyot
stop (see Fig. 7). To achieve the very high contrast required for
terrestrial planet detection a band-limited or Gaussian corona-
graph with an aggressive Lyot stop (F > 1:5) is needed. For
such a coronagraph (see Fig. 8), the near complete rejection of
on-axis light is lost with even a small tilt error, but the coro-
nagraph remains robust against tip-tilt errors in the sense that

Fig. 7.—Combined effect of Lyot stop tuning parameterF and tilt errors on a
Gaussian Lyot coronagraph indicated by total coronagraph transmittance. A
family of Gaussian Lyot coronagraphs with a � ¼ 8 k=D focal stop and varying
Lyot stop diameters is shown. The no Lyot stop case accounts for only the
fraction of energy suppressed by the focal stop. The progressive undersizing of
the Lyot stop from F ¼ 0 (a Lyot stop that is the exact image of the input pupil)
in steps of F ¼ 0:25 rejects both on-axis and off-axis light. Unlike the hard-
edged case, the on-axis rejection continues to improve toF > 1, since the wings
of a Gaussian continue to drop rapidly, unlike the wings of the sinc function. The
transmittance asymptotes to the transmission of the Lyot stop.

Fig. 5.—Coronagraph transmittance as a function of tilt for three hard-
edged and Gaussian focal stop diameters. Transmittance is defined as the
fraction of light entering the system aperture that propagates to the final image
plane outside the image of the focal stop. It is the total fraction of light that the
coronagraph suppresses, not the on-axis null depth. Note that the suppression
of the 6 k /D hard-edge coronagraph improves with small tilt errors as a result
of the phasing of the dark /bright Airy pattern with respect to the stop edge.
The rejection factor asymptotes to the fractional throughput of the F ¼ 0:5
undersized Lyot stop [of diameter (1�1/s)D for an sk /D focal stop], which
always blocks a fraction of the light.

Fig. 6.—Combined effect of the Lyot stop tuning parameter F and tilt errors
on a hard-edged Lyot coronagraph indicated by total coronagraph transmit-
tance. A family of Lyot coronagraphs with an 8 k /D diameter focal stop and
varying Lyot stop diameters is shown. The no Lyot stop case accounts for only
the fraction of energy suppressed by the focal stop. The progressive under-
sizing of the Lyot stop from F ¼ 0 (a Lyot stop that is the exact image of the
input pupil) in steps of F ¼ 0:25 rejects both on-axis and off-axis light. The
point of diminishing returns is at F � 0:5, as found by Sivaramakrishnan et al.
(2001). The transmittance asymptotes to the transmission of the Lyot stop.
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the wings of the PSF are suppressed even for tip-tilt errors of a
few k /D.
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