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Summary. The color of the zodiacal light is studied in the general
context of light scattered by dust particles. It is shown that the
color is controlled by various mechanisms in a complex way. The
spectral variation of the complex index of refraction, the size
distribution function and the roughness of the dust grains all play
a significant role in the color of the scattered light. It is also
shown that the very geometrical conditions of observation of the
zodiacal light result in a color effect which depends upon the
elongation.
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1. Introduction

The brightness of the zodical light observed along a line-of-sight
is classically expressed by a double integral, one over the size
distribution of the interplanetary grains and the other, over their
spatial distribution. Under certain assumptions, it is possible to
get rid of this second integral using so-called inversion techniques
and to obtain the volume scattering function (VSF) which con-
tains only the integral over the size distribution (Dumont, 1973;
Dumont and Sanchez, 1975). This function characterizes the
scattering function of a unit volume of interplanetary dust. If the
size distribution is assumed independently, one can compute
VSF for various types of dust grains and compare with the
“observed” function. However, it is well known that such an
approach does not really allow to test the size distribution, and
that two widely different size distributions can produce similar
VSF. Additional observational data are therefore introduced to
help disentangling the situation, in particular the color of the
zodiacal light. The most recent observations (e.g., Leinert et al.,
1982; Cebula and Feldman, 1982) basically indicate a slight
reddening from the ultraviolet to the red, but also that this effect
depends upon the elongation.

Conventional wisdom leads for instance to conclude that the
absence of a blue trend drastically limits the presence of sub-
micronic grains in interplanetary space. The purpose of this work
is to show that this symplifying view is not necessarily true and
more generally, that the color is controlled by several effects in a
complex way; we shall not attempt here to blindly reproduce the
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observed color of the zodiacal light but rather to explore and
understand in which way these various mechanisms determine it.
We first define the color ratios of the zodiacal light and of a set of
dust grains having a given size distribution function and establish
a relationship between the two expressions. We then introduce
two different size distributions recently derived; they are viewed
here are “extreme” examples in the sense that one favors small
grains while the other favors large grains. We then show how the
variation of the complex index of refraction with wavelength for
real materials modify the classical Rayleigh behaviour; the appli-
cation of the exact Mie theory combined with the effect of the size
distribution may almost annihilate the blue effect even in the case
of the distribution emphasizing small grains. We then consider
the role of the roughness of the grains and show that the color of
the scattered light depends upon the scale of the asperities. In a
final section, we prove that the color of the zodiacal light is
necessarily a function of elongation in agreement with the above
observational results.

2. Expressions of the color of the zodiacal light
and of the light scattered by dust grains

2.1. The color of the zodiacal light

Following the assumption and notations used by Lamy and
Perrin (1986), the brightness Z of the zodiacal light is given by

3
dsine
X G(Ea Ba BO,B)da (1)

where the geometrical variables and parameters d, 8,, B, ¢, 0 are
defined in Fig. 1. In addition, F(4) is the spectral solar flux at
heliocentric distance d, = 1 AU, r the heliocentric distance, f,
the heliocentric ecliptic latitude (i.e., measured w.r.t. the plane of
symmetry IT of the zodiacal cloud). The spatial density V(r, §,)
has been written as product of two independent functions:

V(r, ;) = CR(r)G(B,)

where C is a constant. § is the volume scattering function
(“VSF”) defined by

Z(d9 ﬁo» ﬂs &, ’1) = F(D('l)

I
J ¥(0,2)R(d, ¢, 0)

v, 1) = k%JF(H’ J,5)S(s)ds (cm™!sterad ') ¥}

and which describes the scattering properties of a unit volume of
interplanetary dust.
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x LINE OF SIGHT

Fig. 1. Geometry and notations

In this expression k = 2n/A is the wave number of the light
incident on the dust particle whose mean size is d, = 2s and
whose characteristic scattering phase function is F; 6 is the
scattering angle. We have

C= NO/JS(s)dS

where N, is the grain number density at 1 AU and S(s) is the size
distribution function.

If the line of sight lies in the plane of symmetry IT and if the
radial dependence of the spatial distribution R is given by

R(d,e,0) = R(r) = r ¥ =(dsing/sin0)™"
then Eq. (1) becomes

v+2 (10
%J (0, 1)sin*(0)do. 3)

Z(d, e, 1) = ——
(dsineg

If the line of sight is outside the plane of symmetry but if

R(ry=r""

and if the angular dependence of the spatial distribution G is

given by G(e, B, Bo, 0) = G(B,) = G(0) exp(—w]sin B |") then

Eq. (1) becomes

Z(d’ BO’ ﬂ’ & j') = Z(d’ Bn95’ j')

_Fo()dy*? JH

" (dsine)’*!

Y (0, A)sin”(B)exp(—w|sin §,]*)d0 4)

€

289

In the case of f, = 0 (i.e., for an observer located in the plane IT),
Lamy and Perrin (1986) have shown that, from very coherent sets
of observational data of the zodiacal light and the F-corona,
Egs. (1), (3) and (4) are good models of their brightness when the
spatial dust number density is given by the modified fan model

r~texp(—3.5|sin B,|*)

(i.e. when v = 1 and w = 3.5) where u ~ 1 slightly increases with
the ecliptic latitude f.

The color of the zodiacal light is defined w.r.t. a reference
wavelength 1,. As the color is used to obtain the physical
properties of the interplanetary grains from the spectral proper-
ties of the light they scatter, solar spectral effects must be elimin-
ated. So, following the standard definition of the color ratio at
wavelength A relative to the sun (Leinert et al., 1974), the color
ratio of the zodiacal light is expressed from relationship (1) as

Z(d» Bo, )89 &, l)/FO('l)

€t 220 = G 4 o B Fa) Fo )

v
J Y(0,A)R(d, e, 0)G(e, B, By, 0)dO

=Tn O]
'[ w(e’ j'O)R(d’ 85 G)G(E, ﬂ’ ﬂo’ e)de

2.2. The color of the light scattered by dust grains

To obtain the intrinsic properties of a dust grain from the color of
the light it scatters, we use the scattering cross section g, or the
efficiency factor for scattering Q.,, i.e. parameters which do not
involve the directions of the incident and scattered lights. So for a
grain illuminated by an incoming light of wavelength 4, the color
ratio is defined by

asca(i) — Qsca(l)
asca(lo) Qsca(l(.))

Cog (4 4o) = (6)

with (Van de Hulst, 1957)

21

1
Osca (’1) = F

we note that the function F is such that

F(6, 4,s)sin0do;

20

F(0,2,s)= J F(0, ¢, 4,s)deo.

)

Let us consider now not only a dust grain but a set of grains
whose size distribution function is S(s); if we assume that there is
no multiple scattering between the grains, the total scattering
cross-section is defined by the expression

1 211 1
Ogea(A) = k—zj ds S(‘S)J d(pJ F(0, ¢, 4, s)sin0do W)
s 0 0

and relationship (6) remains valid to define the color ratio of a
population of dust particles. Moreover, let us suppose that the
scattering function is locally axially symmetric (this is the case in
the interplanetary medium for a large number of randomly
oriented particles; Perrin and Lamy, 1986); then relationship (7)
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becomes:

1 I
Oga(A) = —I;j dGsinOJ F(0, 1,5)S(s)ds

0

1 i8¢
=EJ ¥ (6, 1)sin0d0 ®)

2.3. Relation between the color of the zodiacal light
and the color of a distribution of dust grains

We suppose thereafter that the observer is in the plan of
symmetry I1. ‘
For the model

V(r, B) oc r~Vexp(—w]sin B,|")
the color ratio of the zodiacal light defined Eq. (5) becomes
1
j ¥ (6, A)sin®(0)exp (— w|sin B, |*)dO

: ©)
14
J ¥ (6, o) sin”(6) exp(— wlsin B,|*) 4

CZL(89 4, )'0) =

From a mathematical point of view, relationship (9) gives

1
J ¥ (6, 1)sin”(6)exp (—w|sin §,|*)do

lim =
J W (8, 2o)sin® (O)exp (— w|sin f,|*)d0

€

T1
j Y (0, A)sin”(6)do
= lim ——

1
‘*"J ¥ (6, 1) sin®(6)d0

=Cp (0,4 ) (10)

From relationships (6) and (8), the color ratio of a distribution of
grains is

1
J ¥ (6, A)sin6do
Cpo (A Ao) =

. (1
j (0, 2o)sin0dO
(0]

For the nominal model v = 1 (Lamy and Perrin, 1986), we see
that

lim Cy (& 4, 49) = Cpg(4, 4¢)
=0

This relationship is very important since it shows that, to
study the color of the zodiacal light, it is possible to separate out
the influence of the elongation ¢ from the other mechanisms (size
distribution function, spectral variation of the complex index of
refraction, roughness of the surface of the grains) which can be
analyzed from the spectral properties of the light scattered by a
distribution of grains, i.e., the VSF. This is the subject of the
following sections; in the final one, the effect of the geometrical
conditions of observations (i.e., the elongation will) be taken into
account.

3. Volume scattering function and size distribution

We shall consider two different functions S(s) which have been
recently proposed. They mostly differ by the relative importance
and nature of the submicronic part of the dust population, a fact
which a priori directly bears on the color of the zodiacal light. We
therefore consider them as very appropriate examples for our
present study.

The first size distribution function (thereafter denoted “LL”)
was derived by Le Sergeant d’Hendecourt and Lamy (1980) from
lunar microcrater data and the “solar tracks clock” for the
exposure times. The submicronic part of the population was
mostly obtained from lunar sample 12 054 and the corresponding
flux was subsequently found much higher than the collisional flux
(Le Sergeant d’Hendecourt and Lamy, 1978, 1981). Since these
authors further noted a trend of increasing bulk density of the
projectiles for decreasing crater sizes, they concluded for the
existence of two distingt populations: their so-called “population
I” composed of grains with s > 3 um and bulk densities of 2 to
3 gom ™2 while their “population II” is characterized by s < 3 um
and larger bulk densities.

The second size distribution function (thereafter denoted
“GZFG”) was obtained by Griin et al. (1985). These authors have
argued that

(i) while large lunar microcraters should unambiguously be
attributed to interplanetary dust, craters with size below a few
microns are mostly created by secondary ejecta (particularly the
case of sample 12054 because of its exposure geometry),

(i) no lunar clock is really reliable.

They therefore derived the flux of interplanetary submicronic
grains from a collisional model of the larger grains and used the
results of the long-duration Pegasus impact experiment for an
absolute calibration.

A comparison of the two distribution functions is illustrated
in Fig. 2. A more detailed comparison with other results is
presented by Griin et al. (1985). We see that the collisional flux is
about two orders of magnitude smaller than the lunar flux.

The calculation of the VSF requires further assumptions
concerning the optical properties of the grains as determined by
their composition. The work of Griin et al. (1985) suggests that all
the grains are of similar nature; we shall assume them chondritic.
This will also hold for population I of the LL law. For popu-
lation II, we retain a troilite (or pyrrhotite) composition sug-
gested by the presence of “FSN” iron-sulfur-nickel particles in
the collected extraterrestrial grains (Brownlee, 1978). The corre-
sponding indices of refraction n for the selected wavelengths
ranging from the ultraviolet to the red are presented in Table 1.
The VSF are calculated in the radius interval [0.025-500 um]
using first Mie scattering theory; outside this interval, the contri-
bution is negligible for all scattering angles 6 larger than 295.
Finally, we single out the contribution of the interval
[0.025-3 um] to the VSF (i.e., population II) for both laws in
order to assess and compare the role of submicronic grains. The
calculated VSF are displayed in Fig. 3a, b, ¢, d for A = 0.22, 0.31,
0.5 and 0.63 um.

3.1. The LL law

Population II clearly dominates the VSF especially at scattering
angles between 2°5 and 10° where the contribution of popu-
lation I is almost negligible (note that this is not true for 6 < 2?5
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Fig. 2. Two models of the differential spatial density of interplanetary
dust at 1 AU: the “LL” law (Le Sergeant d’Hendecourt and Lamy, 1980)
and the “GZFG” law (Griin et al., 1985)

since diffraction by large grains will dominate); at larger angles,
this contribution is small but not negligible and depends upon
wavelength. It rises drastically near 6 = 180° because of the
“glory” effect created by dielectric spherical particles and which
does not exist for the absorbing troilite grains. This strong
enhancement should be viewed as somewhat artificial as it results
from the assumption of sphericity inherent to Mie theory.

3.2. The GZFG law

The results are reversed as the contribution of populationI is
much larger than that of population II for all scattering angles.

Table 1. Optical constants of the selected materials

291

The “glory” effect is reinforced by the dielectric nature of the
grains with s < 3 um.

How do these results compare with the observed brightness of
the zodiacal light. Figure 3c displays the observational VSF
denoted y, recently obtained by Lamy and Perrin (1986) from an
inversion of carefully selected brightness data at A = 0.5 um. Both
laws lead to VSF in the right range but they are not really able to
reproduce the shape of y, with the LL law demonstrating a slight
superiority. The variation with 6 is in part controlled by the
assumption of smooth, spherical grains; relaxing this by the
introduction of rough grains drastically improve the situation
(Giese et al., 1977, Weiss-Wrana, 1983; Perrin and Lamy, 1986).

Surprisingly enough, the values of the total VSF for the two
models are not drastically different. There is even a good agree-
ment for 6 < 70° in the visible and the red. For larger angles and
in the ulgtraviolet, the differences are larger but never exceed a
factor 2 except for the backscattering. One is further surprised
when looking specifically at the influence of wavelength, ie.,
color effects. There is only a moderate difference, increasing with
decreasing wavelength, between the two laws but only for
0 < 90°; beyond, this effect is quite small. The usual view that the
dominating role of submicronic particles, a situation which pre-
vails for the LL law, would lead to a large blue enhancement
(contrary to the observations) is clearly not correct. The next
section attempts to clarify this situation.

4. Color, scattering theory and composition

The blue color of light scattered by particles smaller than wave-
length is a consequence of the approximate expression of the
efficiency factor for scattering Q,., (or the cross-section o, ) in
the so-called Rayleigh regime:

n?—1[?

— 12
n?4+2 (12)

8
Qsca(l) = (TE sZ)-l asca(l) = §x4

where x = 2ms/A is the size parameter.

Clearly, assuming n constant, Q,., varies with ™%, increasing
rapidly as A decreases, hence the blue color. However, n depends
upon A for real materials. Writing n = n, + in;, n, and n; are two
real and positive functions of A. Let us consider the sign of
aQsca/ aniiz

a sca
sgn( iiQ )=sgn[—n§‘+n,~2(2n,+1)+3n:‘+2n3+2] (13)
n;

Wavelength 0.22 um 0.31 um 0.5 um 0.63 um
Troilite® 1.60+0.83i 1.42+1.161 1.43 +1.40i 1.66 +1.63i
Pyrrhotite® 1.4840.74i 1.374+1.23i 1.47+1.611 1.7741.94i
Chondrite*® 1.76 4+ 0.0018i 1.91 +.0022i 1.82+.0018i 1.80 +.00201
Obsidian®¢ 1.59+0.015i 1.51+.00016i 1.48+0.000025i  1.48 4+0.000031
Basalt*¢ 1.56 +0.084i 1.53+0.0017i 1.52+0.00092i  1.52+40.001i
Olivine* 1.82 4+ 0.0251 1.71 4+ 0.0051 1.66+0.00011 1.66 4 0.0001i

References: a) Egan and Hilgeman (1979), b) Egan and Hilgeman (1975), ¢c) Lamy (1978),

d) Pollack et al. (1973), e) Huffman and Stapp (1973).
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For n; > 0, the expression in the RHS of (13) has only one root n;,

[2n3 + 14+ [(@dn2+ 172+ 8]1/2]‘/2
Mo =

2

and when n; increases from 0 to some arbitrary large value, Q,
first increases, reaches its maximum value when n; = n;, and then
decreases. n, is a function of A and so is n;,. However, if n;y > n;
and if n; is an increasing monotonic function of 1 on the spectral

domain of interest D, the equation

60 90 120 150 180

d QSCB _ a QSCB

di 04

aQsca dni aQsca dnr
on; d2 on, di

(14)

shows that the 1~ variation of Q, (or g,) given by the term

aQsca . Qsca dni . . oy
i is moderated by the term — a which is positive and the
n

aQSCB dnf
on, di

i

term whose contribution is very small (see below).
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Then, the variation of Q,, is weaker than A~ * therefore
attenuating the blue effect. This is precisely the situation which
prevails for troilite as illustrated in Fig. 4 where the color ratio

b)) QD)
04ca(0.63 ym)  Q,(0.63 um)
(15)

is plotted. The chondritic behaviour exhibits the opposite behav-
iour as n; increases or remains constant as A decreases and a
slight reinforcement of the blue effect results (the variation of n;
with 4 is not monotonic on D).

Likewise, let us study the sign of dQ,.,/dn,; it is governed by
the equation

nt+n2(1—2n)2 —3nf+n?—-2=0

Cpg(4 4g) = Cpg(4,0.63 um) =

which has only one root n,, for n, >0

[2;1,.2 —14+[@n? -1+ 8]”2]”2
Mo =
2

When n, increases from 0 to some arbitrary large value, Q,., first
decreases, reaches its minimum value when n, =n,, and then
increases. n,, is a function of 1 via n;. However, if n,, > n, and if n,
is a monotone decreasing function of A on Dy, then Q.. de-
creases with 2 more steeply than the A~ * variation. Practically,
the variations of n, on D,, are much less than those of n; and the
spectral behaviour of n, has a limited influence on Q,. This is
almost negligible for the materials considered here.

Figure 4 shows that, despite its reduction, the blue color of
the light scattered by small grains of troilite in the Rayleigh
approximation is a sufficiently large effect which would clearly
appear in the zodiacal light. Let us now go one step further and
use the more rigourous Mie theory to calculate Q, ., integrated
over the size distribution function of population II of the LL law.
The blue color is drastically reduced as illustrated in Fig. 4, even
in the case of a chondritic composition. We have considered
additional materials and found that olivine, basalt and obsidian
lead to results very similar to chondrite while pyrrhotite has even
a more neutral color then troilite.

The fact that the applicability of the Rayleigh approximation
is severely limited has already been discussed by us (Perrin and
Lamy, 1981): further to the condition s < 4, it requires that the
complex part of the refractive index n; is not too large. This
second condition is clearly violated in the ultraviolet by all
materials considered here, even by the “dielectric” silicates which
become true absorbers in this spectral domain.

In this framework, we understand the results of Griin et al.
(1985) who calculated Q,, for various materials (obsidian, basalt,
olivine) and wavelengths to rule out a distribution favoring small
grains. Further to the fact that the effect of the size distribution
was not introduced, the selected materials have the same com-
mon characteristic, namely that the imaginary part of their index
of refraction decreases with wavelength resulting in an enhanced
blue effect in the ultraviolet.

5. Color and rough particles

The problem of light scattering by rough particles is complex.
When the size of the particles is much larger than the wavelength
of the incident light, experimental results (see, for example, Giese
et al, 1977, Weiss-Wrana, 1983) have shown large and systematic
differences w.r.t. the results from Mie theory. In a preliminary
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Fig. 4. The color of the scattered light (normalized at 0.63 um) for the
population II of the LL law as obtained from the Rayleigh approxima-
tion and the Mie theory and for various materials: chondrite ( + ), troilite
(@) olivine (OJ), basalt (A), obsidian (A), pyrrhotite (H) and an
artificial material having a constant index of refraction ( x )

effort to interpret those results, Giese et al. (1977) have hinted
that several independent scattering processes are taking place:
forward diffraction, Fresnel reflection, non-polarized reflection
and transmission. Various models have been proposed for each
of these processes (see, for example, Perrin and Lamy, 1986 for a
review). Experimental comparisons led Geake et al. (1984) to
retain the approach proposed by Wolff (1975, 1980, 1981) for the
two last processes: it considers single and double reflections by a
rough surface as well as non-polarized transmission. Taking into
account the effects of the curvature of the particles with the
resulting shadowing, we have obtained a vectorial description at
the light scattered by a rough particle outside the neighbourhood
of the forward direction (Perrin and Lamy, 1983). For the
forward scattering, we used the high energy approximation
(H.E.A.) whose first phenomenological adaption to rough par-
ticle was made by Chiappetta (1980). Briefly this method can be
introduced by comparison with classical electrodynamic; follow-
ing this theory, a component ¢ of the electromagnetic field
scattered by a spherical particle of complex index of refraction n,
is classically obtained from the Helmoltz equation:
VZp(r)+n2k2p(r) =0 (16)
whose solution at a point r far away from the particle is given by

@(r) = expl(ikr) + f(0) exp (ikr)/r (17)
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where r = |r|. The first term represents the incident wave and
f(0), the amplitude of the scattered wave whose expression is

10) = —:T_IJVCXP(—éﬂ’)(I—n2)¢(r’)dr’ (18)

where ¥ is the volume of the sphere.

These equations are similarly to those obtained in the
Schrédinger formalism where the interaction of wave with an
arbitrary particle may be investigated in the framework of the
interaction of a wave with a scattering potential V. The wave
function ¢ (r) satisfies the Schrédinger equation

V2o(r) + k*(1 = V(r)/E)o(r) = 0 19

where E is the energy of the incident wave. The solutions are
given by expressions like (17) and (18) but where (1 —n?) is
replaced by V(r)/E. The equality V' = (1 — n?)E, valid in the case
of a sphere, still hold for a rough particle but the index of
refraction is modified, for instance by introducing a distribution
of the Fermi type (Chiappetta, 1980). The H.E.A. gives an ap-
proximate expression of the amplitude of the scattered waves
valid only in the neighbourhood of the forward direction. A most
elaborated form, valid for all value of the scattering angle, have
been obtained by Perrin and Lamy (1986). However, this involves
a triple integral (over the impact parameter, the radius s and the
scattering angle 6) for each value of wavelength and of the
parameters describing the roughness. The simpler scalar descrip-
tion obtained in the high-energy approximation (Perrin and
Chiappetta, 1985) which requires only the mean amplitude of the
roughness — and not the effective angles for simple and
double reflections — is ample for the present study. Let us
consider the case where the mean amplitude of roughness d, is
proportional to the mean radius, viz

d, =c4s c4€[0.01, 0.25]

and apply our model to the dominating population I (the condi-
tion s > A is required) of the GZFG law to illustrate the role of
roughness on color (the Mie theory being still used for popu-
lation II). Figure 5 gives the color ratio

CDG (Aa 063) = sca(i)/o-sca (063 ﬂm)

for different values of the roughness parameter ¢4 and further
illustrates the overwhelming role of population I in controlling
the color. But the most interesting result is the change of color
with cg4, from the blue for large values of the roughness, to neutral
and to the red for smaller and smaller values. Several studies of
the color of the light scattered by rough surfaces performed by
Egan and Hilgeman (1978) generalizing the work of Aronson and
Emslie (1973) and by Schiffer (1985) has already shown that a
roughness with an amplitude smaller than wavelength leads to a
reddening of the scattered light. Our analysis, based on an
entirely different approach, confirms these conclusions for the
case of large, rough spheres and further shows an opposite trend
when the roughness becomes large.

This can be understood by comparing the mean amplitude of
the roughness with the wavelength of the incident light: it appears
larger for ultraviolet radiations than for visible one. So, for an
amplitude much larger than the interaction wavelengths the
scattering intensity in the neighbourhood of the forward direc-
tion and the enhancement for scattering angles larger than 90°
are more pronounced for shorter wavelengths than for the larger
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Fig. 5Sa and b. The color of the scattered light (normalized at 0.63 um) for
the GZFG law and for various values of the roughness parameters C,
ranging from 0.01 to 0.25: population II alone (a) and global results, i.e.,
populations I + II (b).

ones. But when the mean amplitude of the roughnesses is smaller
than or of the same order as the wavelength, diffuse phenomenae
are less important for small wavelengths than for larger ones and
the opposite result takes place.

6. Color and elongation

To deduce the properties of the interplanetary dust from the
color of the zodiacal light, it is necessary to compare its color
ratio with the color ratio of a set of dust particles having the same
size distribution. We have obtained (Sect. 2)

Cpg(4 dg) = Co1 (=0, 4, 4y)

Then for any line-of-sight of elongation e, the color of the
zodiacal light C; (¢, 4, 4,) can be deduced form Cpg (4, 4) if the
contribution of the angular domain [0,¢] to the value of
Cpg(4, 4g) is known. Letting aside the spectral variation of the
index of refraction, this contribution does vary with wavelength:
it increases with decreasing wavelength (as seen above, this is
particularly the case for large rough particles but holds also for
small spheres). Recalling that

Tsca(4)

Coo(4, 4o) = o ()
sca\’*0
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Fig. 6a and b. The color of the scattered light (normalized at 0.63 um) for
the LL law at two elongations: ¢ = 30° (a) and ¢ = 90° (b) and for three
materials: olivine ([J), chondrite (+) and troilite (@)

and noting that, for A < 1, the contribution of the interval [0, ¢]
is larger for o, (4) than for gy, (4,) up to a value g, we find that
Cpg > C (¢ depends upon the physical parameters of the
grains, composition, roughness, and is typically between 15° and
30°) (Giese et al, 1977, Weiss-Wrana, 1983). Therefore, the
geometrical conditions of the observations reduce any intrinsic
blue effect (and possibly introduce a reddening): “the observ-
ations redden the results”. This is illustrated in the case of the
smaller dust particles (population II) of the LL law by a com-
parison of Fig. 4, which corresponds to ¢ = 0 and Fig. 6a which
corresponds to ¢ = 30°. When ¢ > ¢, the decrease in function of
F diminishes (F may even increase for ¢ > 90°) and is offset by
the increase of the factor A2 [Eq. (7)]: either the above behaviour
still holds as shown by a comparison of Fig. 6a (¢ = 30°) and
Fig. 6b (¢ = 90°) or is reversed as illustrated for the GZFG law in
Fig. 7.

The comparison of observational results obtained by different
authors faces various problems such as instrumental calibrations
and background subtraction, particularly acute in the ultraviolet,
resulting sometime in discrepancies or even contradictions. The
influence of the elongation on the color of the zodiacal light is
best assessed by comparing results obtained by
the same instrument at different elongations. Cebula and
Feldman (1982) observed the zodiacal light in the ultraviolet at
& =21°2 and 29?5 and concluded that the reddening increases
with ¢ in this interval, although the error bars are large. This is
precisely the behaviour we obtained in the case ¢ < ¢5. From the
Helios UBV observations, Leinert et al. (1982) found that the
reddening slightly decreases with increasing elongation, but this
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Fig. 7. The color of the scattered light (normalized at 0.63 um) for the
GZFG law at elongations (0°, 30° and 90°) and for two materials: olivine
(O) and chondrite (+)

effect is really perceptible for ¢ > 90° owing to the accuracy of the
measurements. This corresponds to one of the situations we
described above for ¢ > ¢p.

Although the very observation of the zodiacal light as a
function of elongation introduces an intrinsec color effect, one
should not forget the influence of the possible heterogeneity of
the interplanetary dust cloud (size, composition, roughness)
which may reinforce or attenuate the above effect.

7. Conclusion

We see that the color of the zodiacal light and more generally, the
color of the light scattered by a cloud of dust particles is a
complex phenomenon governed by many different factors. We
have studied in this work the influence of several of these factors,
size distribution function, spectral variation of the complex index
of refraction and roughness of the particles. A particular example
based on two different size distribution functions shows that they
lead to rather similar volume scattering functions and further to
not drastically different color although the two distributions
differ very much in their proportions of submicronic grains. The
very geometry for observing the zodiacal cloud implies also a
color effect since only partial scattering cross-sections (limited to
the elongation ¢) are retrieved. We note that the separation of the
geometrical factors is rendered particularly simple by the model
v = 1, a value justified by our own study (Lamy and Perrin, 1986)
at least for the inner zodiacal light. A value v # 1 would make
relationship (10) more complex but the variations of Cpg and C,
would go in the same direction. We have not considered the color
effect of an inhomogeneous cloud; although there are growing
evidences for the variation of the physical properties of the grains
with heliocentric distance (Lamy and Perrin, 1986; Hong and
Um, 1987), this is not yet sufficiently characterized for being
modelled. But we may suspect that such a variation will bear on
the color as well. All this shows how difficult it is to interpret the
color of the zodiacal light.
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