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The B Pictoris circumstellar disk, like others, seems to exhibit
an inner clearing zone, at typical distances of 1-50 AU from the
star. We investigate the possibility that this void is caused by a
planet embedded in the disk. We have implemented on a Connec-
tion Machine a code which simultaneously integrates the motions
of 8192 particles. These are submitted to Poynting—Robertson (PR)
drag, while being perturbed by a planet orbiting at 20 AU from
the star. The free parameters are the planetary mass, the planetary
orbital eccentricity, and the particle size. Above a critical planet
mass of ~10~7 stellar masses (~5 Earth masses, or § Uranian
masses), the planet is able to trap particles in outer mean motion
resonances, for time scales comparable to, or larger than, the PR
decay time. No permament trapping is observed, however. Once
they escape the resonances, the particles rapidly decay onto the
star, on highly eccentric orbits. A moderate planetary orbital eccen-
tricity (1072) can create large arclike structures in the disk. A
depleted region corotating with the planet, and just outside it, is
also observed. We show finally that these processes can create a
steady state clearing zone extending inside the planet orbit. We
emphasize that the structures excited on the disk by a planet could
be a way to reveal bodies otherwise invisible by direct
imagery. © 1994 Academic Press, fnc.

1. INTRODUCTION

Due to the increasing quality of observations, circum-
stellar regions have recently excited a growing interest,

in particular because they may be the cocoons from which
planets form. They are thus fundamentat clues to under-
standing the formation and the evolution of planetary sys-
tems, including ours. IRAS data imply that most of the
A, F, and G stars have dusty disks (Aumann, 1988). Also,
between 25 and 50% of pre-main-sequence stars and T
Tauri stars have detectable circumstellar disks (see the
reviews by Beckwith ef al. 1990, Beckwith and Sargent
1993, and Basri and Bertout 1993). Until recently, only
the disk surrounding the nearby star 8 Pictoris has been
directly detected by imagery (Smith and Terrile 1984,
1987, Paresce and Burrows 1987, Vidal-Madjar et al. 1992,
Lecavelier des Etangs et af. 1993, and see the review by
Norman and Paresce 1989).

Many other stars are strongly suspected to be sur-
rounded by disks, such as a Piscis Austrini (Fomalhaut),
a Lyrae (Vega), r, Eridani, & Eridani {Chini et al. 1990,
Chini er af. 1991, Stern ef al. 1993), £ Aurigae (Ferluga
1990), and HD 98800 (Zuckerman and Becklin 1993),
among others.

In the case of B Pictoris, the comparison of visible
images with infrared observations indicates that there is
an inner clearing zone at typical planetary distances (a
few to ~30 AU according to the models) from the star;
see Section 2. Similar conclusions are reached about Fo-
mathaut, Vega, 7-Eridani, e-Eridani, with inner bound-
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aries for the disk ranging from ~10 to 50 AU, according
to the star (Chini et al. 1991). These depleted zones raise
dynamical problems, since the dust particles are subjected
to various drags, and should fall rapidly onto the star,
thus filling in the inner zone.

Several hypotheses can be proposed, and are discussed
in Section 2. We retain in this paper one of them, namely
that a planet revolves in the disk and confines its inner
edge. The physics at work is more precisely the interplay
between mean motion resonances with the planet and
Poynting—Robertson (PR) drag acting on the grains. The
complete physics involved in the birth and evolution of
these disks is certainly very complex (gas drag, collisions,
gravitational scattering by planetesimals, etc.). For a bet-
ter understanding of this system, however, we would like
to isolate one process only. Although we use the parame-
ters relevant to the g8 Pictoris system, our study is easily
applicable to other circumstellar disks. The points that
we address here are thus the following:

» Is a planet able to confine an inner edge of the disk,
and what is the minimum mass for this to be possible?
Although other explanations may be proposed, this one
could be valid for some circumstellar disks.

» Are other structures created by the planet? Are such
structures, like gaps, large enough to be imaged in the
near future (see the discussion by Paresce 1992)7 So, even
though the planet is not detectable directly, its effects on
the disk could be visible from the Earth. As we shall
see, the features driven by the alleged planet (arc-like
structures or void following the planet) could discriminate
among various hypotheses, such as sublimation effects,
enhanced gas drag near the star, or perturbations by a
hypothetical brown dwarf (see Whitmire ef al. 1989).

* As we discuss in the next section, a planet could also
be the cause for the infalling of comet-like bodies onto
the star. Within this perspective, it is important to have
a consistent model in which a planet can, at the same
time, shape the circumstellar disk, throw comet-like ob-
jects onto the star or eject them to the outer boundaries
of the disk, stir the disk to increase its thickness, etc.
Again, our model is not intended to be universal, but
rather, a first step for better understanding circumstellar
disks perturbed by planets.

* From a broader point of view, the effect of a planet
on a dust disk may have important implications for the
confinement of material in the disk, and thus can be an
important step for the accretion of new bodies.

In this paper, we study numerically the perturbations
that a planet induces on a disk composed of test particles.
The code is implemented on a Connection Machine, a
massively parallel computer (Scholl et al. 1993). It enables
us to simulate the evolution of 8192 test particles at a
time. This large number can reveal collective patterns
excited by the planet (Roques er af. 1990), much more

easily than the tedious accumulation of isolated runs with
one particle only. This study can be seen as an experi-
ment, which requires more theoretical work once dynami-
cal processes have been more clearly identified. In a com-
panion paper (Lazzaro et al. 1994, hereafter referred to
as Paper 2), we analyze the mechanism of capture itself
into first order resonances in more detail. Qur aim in this
second paper is to give analytical support to the mecha-
nisms revealed in the present paper.

We first briefly review in Section 2 the main characteris-
tics of the 8 Pictoris system. The various forces acting on
a dust particle are discussed in Section 3. The numerical
model is described in Section 4. The results are presented
in Section 5, with a discussion of the sensitivity to the
various parameters (planet mass, orbital eccentricity, par-
ticle size, disk thickness, etc.) A discussion is given in
the final section.

2. THE B PICTORIS DISK: PHYSICAL PROPERTIES

The B Pictoris star is believed to be a young AS dwarf
with an age less than ~2 x 108 years, located at 17 parsecs
from the Earth, with a mass of 1.5 M and a luminosity
of 6 L, (Norman and Paresce 1989, Paresce 1991). The
coronographic images show a nearly edge-on disk with
an extension of more than 1000 AU (Smith and Terrile
1987), and an opening angle of 8 (Artymowicz ef al.
1989). The images reveal furthermore as asymmetry in
the structure of the two ansae of the disk at large dis-
tances, the northeast projection extending 1o more than
1100 AU, and the southwest projection extending to only
~900 AU (Smith and Terrile {987). The inner part of
the disk also exhibits an asymmetry in brightness, but
reversed with respect to the outer regions (Vidal-Madjar
et al. 1992, Lecavelier des Etangs et al. 1993). These
latter observations show that the particle albedo is neutral
in B, V, R, and Ic at distances larger than 75 AU, and
that the albedo drops by a factor of 4 from 75 to 30 AU in
the B band. This reddening could be explained by particles
becoming more dusty (less icy) when going inward. Inde-
pendent observations of the 8 Pictoris system confirm
the evidence of changing disk structure within 100 AU
(Golimowski er al. 1993, Lagage and Pantin 1993).

Coronographic images taken in the visible and IRAS
data and ground-based IR observations can be combined
to constrain the radial distribution of the dust around
the star, together with the size distribution of the grains.
Several models have been developed; there is no unique
solution, but some general structural features of the disk
have been recognized. A model by Artymowicz er al.
(1989) gives grain radii in the range 1-20 pwm, with a
high albedo >0.5. The minimum grain radius of 1 um
is confirmed by independent observations (Norman and
Paresce 1989). The combination of IRAS and corono-
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graphic data requires that the inner part of the disk is
largely cleared. However, while the existence of this
clearing zone seems to be well established, its size is very
model dependent, with a radius varying between 35 and
36 AU for pm-sized particles (Artymowicz et al. 1989,
Chini et al. 1990, and Chini ef «l. 1991). According to
these authors, the optical depth could be as large as 7 x
10~% at the densest part of the disk. The estimated total
mass of the dust disk is one lunar mass.

Some alternative models have been proposed more re-
cently by Backman er al. 1992}, using visible data and
IRAS fluxes, plus IR ground-based observations (10 and
20 pm). In order to fit all these observations, this model
requires a two-component disk. An outer (r > 80 AU)
disk would be made of icy particles, and an inner (r << 80
AU)) disk would be made of refractory material, with a
significant deficit of material with respect to an inward
extrapolation of the outer component. This inner disk
either would be made of smaller particles, compared to
the outer disk, or would have a flatter radial density distri-
bution than the outer disk. The minimum grain size would
be in the range ~0.4-3 wm, assuming a power law with
an index of —3.5 for the difterential size distribution of
the grains (number of particles with radii between s and
s + ds proportional to s ). The normal optical depth
of their preferred model is ~5 x 1074, around 20 AU.
Finally, the inner disk should also have an inner limit
between | and 30 AU, defining an innermost void.

Alternative models includes millimeter data as well as
optical and IR data. These models indicate that large parti-
cles should be present, at least 5 mmi in radius and possibly
more (Chini et al., 1991). This model requires an inner
cavity of ~35 AU, and a disk mass of ~0.5 Earth masses
(~40 lunar masses). Similar conclusions are reached by
Zuckerman and Becklin (1993) concerning Vega, Fomal-
haut, and g Pictoris, with disk masses ranging from 0.1 to
10 lunar masses, contained in millimeter-sized particles.

UV spectroscopic observations of 8 Pictoris show tran-
sient red-shifted absorption lines corresponding to mate-
rial falling onto the star. These observations are highly
variable, with time scales ranging from some hours to
some months (Norman and Paresce 1989, Beust ef al.
1990, 1991, Beust 1991, Boggess et af. 1991, Beust and
Tagger 1993}, This material could originate from the subli-
mation of comets perturbed by a planet and vaporized as
they fall onto the star.

In a protoplanetary disk, the dust is either primordial
(nebula condensates) or produced by cometary activity
and collisions between larger planetesimals. The age of
B Pictoris and the tenuous density of the gas argue in
favor of the second mechanism. In this case, the disk
corresponds to a short period of protoplanetary evolution,
after the gas shell has been ejected, when the planetesi-
mals are still accreting into a few large bodies. The open-

ing angle of the dust distribution also argues in favor of
large bodies stirring the disk and providing the dust
through collisions. On the other hand, theoretical models
yield some constraints on the size distribution of the solid
material in a protoplanetary nebula: the gaseous compo-
nent causes a very rapid inward drift of the grains. So,
unless the dust is confined in a very thin subdisk, in which
the gas drag should be reduced, the accretion of kilometer-
sized bodies must occur before the ejection of the gas
{see the reviews by Lissauer 1987, 1993). So the 3D
structure of the 8 Pictoris disk implies that the gas ejection
happened when a large part of the solid material was
already in the form of kilometer-sized bodies.

3. FORCES ACTING ON A GRAIN

A complete review of the forces acting on a circumstel-
lar dust grain ts done in the case of the solar system by
Leinert and Griin (1990). The variables used here are
defined in the Appendix of Paper 2.

3.1. Nongravitational Forces and Processes

Radiation forces are due to the absorption and re-emis-
sion, by a particle, of the momentum carried by the stellar
photons. The reader is referred to the papers by Burns
etal. (1979) and by Leinert and Grin (1990) for a thorough
discussion of these forces, The corresponding accelera-

tion is
we (B[ (-Du- o

where ' is the constant of gravitation, M, is the mass of
the star, r is the distance to the star, c is the velocity of
light, # and v are the radial and total velocity of the grain,
and w, is the unit vector in the direction of the incident
radiation. The constant term in (1) is referred to as the
pressure of radiation, while the velocity-dependent term
is referred to as the Poynting—Robertson (PR) drag. Fi-
nally, 8 is by definition the {constant) ratio of the radiation
pressure to the gravitational attraction of the star. Its
value depends on the particle size and on its optical prop-
erties, as discussed below,

The pressure of radiation being opposed and propor-
tional to the gravitational pull of the star, its effect is
strictly equivalent to changing the mass of the latter by
a factor of 1 — 8. This changes the mean motion and
orbital velocity of the particle, with respect to their local
Keplerian mean values, by a factor V1 — 8. This effect
changes the location of the mean motions resonances,
as seen later. The PR drag causes decay of the particle
semimajor axis a and orbital eccentricity e, at the rates
(Burns er al. 1979)
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is referred to as the coefficient of dissipation. Note that
/e has the dimension of a time. Actually, it is the typical
PR decay time scale for @ and e. Finally, the total perturba-
tion (1) has no effect on the orbital inclination { of the
particles, since it lies in the orbital plane of the latter.

The values of the coefficients « and 8 for the Solar
System are derived from Burns ez al. (1979). These values
can be scaled to the stellar mass and luminosity according
to
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where s, p, and a are the particle radius, density, and
semimajor axis, respectively. Furthermore, 0 is the radia-
tion pressure efficiency, L represents the luminosity, O
refers to the Sun, and Y refers to the star. The other
subscripts indicate the wunits, Using L,/Lgy ~ 6 and
MM ~ 1.5, we have
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The decay time due to PR drag is finally

1 410
= i () pptiovenrs. ©)

In the rest of this paper, we assume a density of the
grains of 3 g cm™?, typical of refractory materials like
silicates. The coefficient @ lies in the range ~-0.5-2 for
um-sized particles made of typical cosmic substances,
while @ = 1 in the geometrical optics approximation
(Burns et al. 1979).

The steady-state spatial density for dust particles evolv-
ing under PR drag only is proportional to r 9, where ¢ =

1 if the source is localized on a circular orbit, and where
g = 1.3 if the sources are spread on eccentric orbits (Lein-
ert and Griin 1990). As discussed previously, however,
the distribution of dust around g8 Pictoris must present a
central clearing zone to match the observations. Thus,
such a distribution cannot be due to PR drag only.

Stellar wind induces a drag comparable to the PR drag.
Actually, its effect can be modeled by introducing a multi-
plicative factor 1 + sw in front of the term —v/c in Eq.
(1}, where sw is the ratio of stellar wind drag to PR drag
(Jackson and Zook 1992). This ratio is 0.3 in the case of
the solar wind drag for magnetite grains in prograde orbits
and 0.6 for retrograde orbits {Leinert and Griin 1990). As
far as we know, we do not have information on this ratio
in the more specific case of 8 Pictoris, or for other stars.
Actually, this effect can be absorbed in the coefficients
a or 8, so that it does not alter our results. The stellar wind
also induces a Coulomb pressure for charged particles due
to passing stellar ions (Leinert and Griin 1990).

In the case of icy particles, the sputtering mechanism
could be important: the pulling of atoms from the grain
surface by the fast solar wind ions (Lanzerotti et al. 1978)
could be an efficient mechanism to limit the presence of
icy particles near the star.

The magnetic field also affects the motion of charged
particles (Lorentz force}. Note that a young star may have
a strong stellar wind and/or a magnetic field, but we do
not have in so far any observational constraints on that.
The Lorentz force is important for very small particles
(particles radius smaller than (.1 pm in the Solar System,
Leinert and Griin 1990). _

The gas surrounding a young circumstellar disk can
induce a drag on a particle. However, the circumstellar
dust detected around « Lyrae, « Piscis Austrini, and &
Eridani does not show evidence for an important circum-
stellar gas component, in spite of a careful search (Hobbs
1986). The 8 Pictoris disk has only a very dilute gaseous
component, with a hydrogen density of ~10* — 10° cm ™3
at 400 AU (Norman and Paresce 1989). Because the mean
free path of atoms is then much larger than the particle
size, an Epstein drag acceleration acts on the particle
(Weidenschilling 1977) of

_ (&) (ﬂ)

p/\ s/
where p, (resp. p) is the density of the gas (resp. the
particle), v; is the thermal velocity of the atoms, and v,

is the velocity of the particle relative to the gas. This drag
causes an orbital decay of the particle at a rate of

(Eh. - ()0
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where # is the mean motion of the particle, assumed to
follow a circular orbit. The value of v, is dominated by
the fact that a particle orbits the star at a velocity
V'1 — Ban, due to the pressure of radiation, as explained
after Eq. (1). Thus v, = —(1 — V1 — B)an = G(anp/2).
Finally, a rough estimate of v+ is ~ 1500 m sec ™!, assuming
a temperature of ~100 K for the gas at 20 AU. The value
of p, is the most difficult quantity to determine. There is
no direct measurements of the neutral hydrogen number
density »ny; around 2 Pictoris, or around other stars with
circumstellar dust disks. Indirect estimations can be made
by the determination of ion densities such as Alll, Call,
Mgll, Fell, etc., and then completion by hydrogen using
typical interstellar abundances. The typical values, ny ~
10* — 10° cm~* (Norman and Paresce 1989} are thus quite
uncertain, especially because the hydrogen abundance
may not be representative of interstellar values if the
heavier elements are produced by already formed plane-
tesimals or comets. The right-hand side of Eq. (11) is the
inverse of the decay time 7,,; due to the gas drag. Using
p = 3 gcm™?and the previous numerical values, one gets

10¢
My

o~ 4800 (12
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where #y is in cm~}. Comparison of Egs. (9) and (12)
shows that, with a typical density of 10 cm™?, the gas
drag seriously competes with the PR drag for pm-sized
particles. Note that this drag adds a new factor in the
velocity dependent terms of Eq. (1), while the pressure
of radiation remains the primary force which decides the
orbital velocity of the particle around the star.

The sublimation of particles occurs at a distance from
the star which depends on the particle composition. For
most of the materials except ices, the melting temperature
lies in the range 1000-1500 K. Hence, sublimation plays
a role only at a few stellar radii from the star. According
to Backman er al. (1992), sublimation of ice particles
should be effective on a time scale much shorter than
the stellar lifetime, inside a radius of ~80 AU, i.e., the
boundary between the outer and inner disks, which they
have derived independently from IR and visible data.
Thus, the grains that we consider in our model are as-
sumed to be made of heavier elements, with typical den-
sity of 3 g cm™?, as pointed out earlier.

The results of collisions between dust particles depends
strongly on the impact velocity (Leinert and Grin 1990).
The g Pictoris disk thickness increases linearly with the
distance to the star, with full thickness of ~30 AU at
~100 AU (Norman and Paresce 1989), corresponding to
an opening angle of ~8° This thickness implies typical
impact velocities of ~1 km sec™! at 20 AU, more than
sufficient to destroy the particles. The collision frequency,

estimated from a normal optical thickness of 7 ~ 5 x 10~¢
at 20 AU, is toy ~ To/87 ~ 2 x 10° years for an orbital
period of 73 years, again at 20 AU (Backman er al. 1992).
However, the figures used here being model dependent,
the collisional time couid easily vary by one order of
magnitude,

We shall see that the total time scale for trapping into
resonances, for the creation of accumulations of material
or arc-like structures, and for the escape from the reso-
nances lies in the range 10°—~10® years, against ~10* years
for the collisional time scale. The structures excited by
the resonances are thus expected to be continuously
eroded, not only by the destructive collisions, but also
by the various processes discussed in this section. The
resulting steady state should then be a complex combina-
tion of several processes.

Our philosophy here is to isolate one of these processes,
namely radiation forces acting together with resonant
forcing from a hypothetical planet. Even though it may
be argued that this does not necessarily describe the com-
plete problem, or even the dominant forces, our approach
can be validated for several reasons, (i) The intensity of
radiation forces is quite robustly established. This study
is thus applicable to a wide variety of stars with tenuous
dust disks (with densities ~10 times smaller than for the
B Pictoris system), where all the other drags can be dis-
carded. (ii) In contrast, gas drag, stellar wind drag, and
magnetic forces depend on still poorly known parameters
for most of these disks. (iii) Radiation forces may be
viewed as an archetype of weak dissipative forces, with
all the physics absorbed in one coefficient, 8 (or equiva-
lently «; see Egs. (5) and (6)). Studies of drags with similar
forms, but different physical origins, could benefit from
the present study. (iv) A mixture of various drags would
obscure the main physics at work by adding new free
parameters in the model.

Once the effects of one kind of force have been better
understood, more complex physics can be included. For
instance, the statistical distribution of dust that we obtain
at a given moment can be used in a more sophisticated
code, to study the collision frequency in various parts of
the disk. Also, the gas drag can be implemented at little
cost, in view of its similarity with the Poynting—Robsert-
son drag.

3.2. Gravitational Perturbations

A planet embedded in the disk can induce two kinds
of gravitational perturbations:

{1} Close encounters of particles with the planet can
lead to accretion, or to gjection of the particles on eccen-
tric orbits. In this latter case, the pericenter or apocenter
of the particle orbit remains near the planet orbit. Such
a mechanism could in principle explain the inner clearing
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zone if a large fraction of the infalling particles have close
encounters with the planet. This happens if the radial
migration of the particle between two encounters with the
planet is less than the Hill radius of the planet, ak, where
h is the Hill parameter (m,/3M )" and m, is the mass of
the planet. Assuming that the particle orbits in the same
plane as the planet (2D case), some straightforward alge-
bra then yields

372
My 3 (1_67__79_) . (13)

M, 3 n

In the 3D case, however, there is an additional neces-
sary condition, namely that the orbital inclination i of the
particle be smaller than the Hili parameter #; i.e.,

m .
—P =33
M,

(14)

Considering the value of « derived in Eq. (8), Eq. (13)
is equivalent to m,/3M, > ~2 x 1077/(s}2Valf). For
particle sizes between 1 and 10 pm at 20 AU, this requires
planet masses between ~2 X 107° M, and 7 x 1077 M,.
Thus, in the 2-D case, the planets that we consider
(masses between 1075 and 10~* M, see Section 4.1) are
large enough to scatter most of the particles through close
encounters.

Using the second condition (14), we see that an Earth-
like planet (mass 2 x 107® M,) is able to scatter particles
through close encounters only if they have inclinations
smaller than ~0.5°, while a Jupiter-like planet (mass 6.4 x
10-* M,) can go up to ~3.5°. For this large mass, how-
ever, the planet is also able to trap particles into outer
resonances well before they cross the planet orbit.

(2) Mean motion resonances induce long term perturba-
tions on the particles. A pth order mean motion resonance
occurs when the mean motions 7, and # of the planet and
the particle are related by

(g + p)n, — gn~0, {13)
where g 1s negative for exterior resonances and p is always
positive. We will refer to the (g + 1):g resonance’”
for designating the above condition, for p = 1. When
numerical values are used, we will drop the signs, without
loss of information. For instance, wheng = —4andp =
1, we will refer to the 3:4 resonance.

The combination of dissipation (here, the PR drag) and
resonance gives rise 1o a repulsive torque between the
planet and the grain: particles at outer (resp. inner) reso-
nances will gain (resp. lose) angular momentum. In that
sense, only exterior resonances are able to halt the decay
of particles. This mechanism is very general, and has been
studied in the frame of planetary rings (Goldreich and
Tremaine 1982, Greenberg 1983, Meyer-Vernet and Si-

cardy (1987), gas drag {Greenberg 1978, Weidenschilling
and Davis 1985, Patterson 1987, Beaugé and Ferraz-Mello
1993, Kary et al. 1993), and PR drag (Gonezi et al, 1982,
Jackson and Zook 1989, 1992, Sicardy et al. 1993, and
Weidenschilling and Jackson 1993).

However, the problem of resonant capture with PR
drag has difficulties of its own. First, the PR drag is not
separable from the radiation pressure, which can signifi-
cantly change the resonance locations, and thus their
strength. Since the particle feels a star with an effective
mass (1 — B)M,, Kepler's third law vields a resonant
semimajor axis of

q 2/3
peg = ap(l - B)Ha (m) (16)

fora (g + p): g resonance. Another difficulty stems from
the fact that the coefficient of dissipation associated with
the PR drag is very small. This allows the particle to get
high orbital eccentricities (e.g. ~0.5) before any equilib-
rium being reached. This vyields analytical difficulties,
linked to the crossing of the planetary orbit or nonlinear
terms in the perturbing function (see Paper 2). So ques-
tions such as the existence and the stability of equilibrium
orbits are much harder to answer than in the case of gas
drag (Weidenschilling and Davis 1985).

4. THE MODEL

4.1. Physical Parameters

In cur model, the dust particles are subjected to (i) the
gravitational forces exerted by the star and a hypothetical
planet orbiting it, (ii) the pressure of radiation, and (iii)
the PR drag (Eq. (1)). The mass of the disk is neglected.
The central star has a mass M, = 1.5M. The semimajor
axis of the planctary orbit is fixed to 20 AU for all the
runs, corresponding to an orbital period of T, ~ 73 years.
The planetary mass m, is a free parameter of our model,
and is given in units of the stellar mass M, . Typical values
in our model range from 107°% M to 10~* M. For compar-
ison, the Earth has a mass of about 2.0 x 107% M, while
Jupiter has a mass of 6.4 x 10~% M, . These figures are
1.9 x 1074 M,, 2.9 x 107>M,, and 3.4 x 107° M, for
Saturn, Uranus and Neptune, respectively. We thus ex-
plore the effects of planets from a small Earth up to a
small Saturn. The other free parameters are the planet
orbital eccentricity and the value of 3. .

The modetl is 3D; the initial inclinations of the particles
to the planet orbital plane are randomly chosen between
0° and 8°. This figure corresponds to the estimated opening
angle of the 8 Pictoris disk, as discussed earlier. However,
several runs were carried out with zero inclinations (2D
model), in order to better separate the role of the particle
orbital inclinations in the trapping mechanism.
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4.2, The Code

Our code is implemented on a Connection Machine CM-
2/8k, a massively parallel computer. It can be described
as a sample of microcomputers which all simultaneously
execute the same instruction {SIMD computer), and
which can exchange data on a very rapid network. Our
model, which does not consider particle interactions, is
thus particularly well adapted to the Connection Machine.

The code is described in more detail elsewhere (Scholl
et al. 1993), and is briefly outlined here. Each particle is
assigned to one of the 8192 microcomputers. This large
number allows each run to reveal collective patterns on
the disk driven by the planet, within a reasonable amount
of CPU time (typically 6 hr for the integration of the
motion of 8192 particles during 10,000 planet revolutions).
The floating point accelerators implemented on the micro-
computers have 32 bits (single precision}. This limits the
integration time to 10,000 planctary revolutions, a suffi-
cient time scale for our purpose.

The ¢ode integrates the exact equations of motion in
Cartesian coordinates, using a 4th order variable-time-
step Runge—Kutta integrator. The latter is known to be
comparatively slow on traditional moneprocessor com-
puters. On a massively parallel computer, however,
Runge—Kutta integrators are comparatively fast inte-
grators. An intrinsic problem of paralle} computing is to
integrate a large number of orbits with a variable time step,
since all the processors execute the same instructions. In
principle, the particle which needs the smallest time step
forces the other particles to proceed with an unnecessary
slow scheme. One-way out of this dilemna is an asynchro-
nous use of the parallel computer. Each particle advances
in time with its own, optimized, time step, and each parti-
cle has a different proper time during the run. The whole
sample advances in time statistically at the same speed.
In order to produce snapshots of the system at a pre-
scribed time 7., the coordinates of a particle are stored
when its proper time crosses f,..

A run is stopped when 80% of the sample has been
integrated over 10,000 planetary revolutions. The posi-
tion—velocity coordinates of the particles are kept every
500 planet periods (~36,500 years).

To follow the evolution of the particles for a longer
time, some integrations of the exact equations of motion
have been computed with double precision on a VAX
4500. This integration is done with a 4th order Bulirsch
and Stoer integrator.

4.3. Initial Conditions

We use two kinds of initial conditions. (i) In most runs,
the particles are initially randomly distributed on circular
orbits with semimajor axes between 32 and 33 AU. This
corresponds to a ring of particles which is far away from
the first important outer resonance (1:2), near 28 AU.

The next outer principal resonance (1 : 3)islocated near 36
AU, but is ineffective for our selected range of planetary
masses, eccentricities, and parameters 8. All particles
cross the 1:3 resonance without any significant change
in the orbital elements. (i) In another set of initial condi-
tions, the particles have pericenter distances a(l — &)
randomly distributed between 24 and 25 AU, g varying
between 25 and 30 AU (Fig. 1a). This distribution ¢orre-
sponds to launching particles between 24 and 25 AU with
various velocities. Otherwise, it is arbitrary (i.e., with no
physical significance). However, it allows us to explore
different values of initial eccentricity, an important pa-
rameter for the trapping into resonances. If need be, a
subset of particles may be chosen in the initial population,
in order to select a physically more relevant distribution.

We use 8 values of 0.1, 0.2, and mainly 0.3, correspond-
ing to particle radii of 8, 4, and 2.7 pum, respectively, in
the geometric optics approximation, and with p = 3 g
cm™? (Eq. (7). However, various particle densities or
optical properties are likely to be found in the disk. Conse-
quently, these values of 8 should represent particles with
sizes ranging roughly between | and 20 pm, a reasonable
interval according to observations (Section 2). Values of
B larger than 0.5 would lead to the escape of particles
on hyperbolic orbits, for an initially circular Keplerian
velocity (Burns ef al. 1979). Values of 8 smaller than 0.1
require, on the other hand, an extremely long CPU time,
since the decay time due to PR drag varies like 1/8 (Eq.
9)).

Tables 1 and 11 list the values of the main parameters
used in each run (C1 to C9 for the Connection Machine,

TABLE 1
Simulations on the Connection Machine: 8192 Particles,
10,000 T, ~ 7.3 x 10° years

run  planet planet orbit particle particle orbit

particle orbit

id. mass® eccentricity eoeff. §  inclinations® jnitial conditions®
C1 10% 0 0.3 0 Wo<dl 21<g<2h
c2 10 ] 0.3 0 Whaa<dl 24 <y
3 107 o 0.3 0 2<a<dd oe=0
c14  107% 0 0.3 D28 235<a<i0 2i<gcih
c5 107¢ 0 0.3 0«3 R<acdd, =0
ce  ip™ 0.01 0.3 ] <cacdd, e=0
c7 1wt 0 0.3 0 Hawa<dld, W<gB
cs 107¢ 0 0.1 0 << W<y
co 107 0 0.3 0<i<d  25<a2d<y o<033

“ In units of the stellar mass.

* When an interval is specified, the quantity is randomly chosen
in that interval. The quantities a, e, {, and g are respectively the
semimajor axis, the eccentricity, the inclination, and the pericen-
tric distance. Distances are in Al.
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Left panels: Pole-on view of the simulated circumstellar dust disk. The central star, representing g Pictoris, has a mass M,

semi—major axis

1.5

Mg. The dotted line is the orbit of the planet, at 20 AU from the star. The particle positions are plotted in a frame corotating with the planet
(marked as a cross), whose mass is here 1078 M, i.e., ~0.5 Earth mass. Orbital motion is counter-clockwise, and one planetary revelution takes
~73 years. In all figures, distances are in astronomical units (AU). Righr panels: Eccentricity vs semimajor axis, or {(a, ) diagrams. The solid
line represents the points of constant pericenter distance, a{l — ¢} = 20 AU. Above that curve, the particle orbits cross the planetary orbit.
The parameters of this run (C1) are summarized in Table 1. (a) Initial conditions. (b) The system after 4500 planetary revolutions T, 3.3 x 10°

years).

and V1 to V3 for the VAX 4500), and provide the identifi-
cation labels which are used later in the paper.

5. RESULTS

5.1. 2D Disk with Circular Planetary Orbit

With an Earth-like planet with mass 1078 M, = 0.5
Earth mass (model C1, see Table I}, all the particles,
which have zero inclinations, fall onto the star at the rate
given by Eq. (9), with 8 = 0.3, and 1/a ~ 4.4 x 10° years.
There is no trapping at resonances; the only action of the
planet is to scatter the particles through close encounters

(Fig. 1), as expected from Eq. (13) and the following
discussion. The particles are ejected either inside or out-
side the planet orbit, with their pericenters or apocenters
at the planet orbital radius (20 AU). This is readily visible
in Fig. 1b, where the points are scattered parallel to the
curve a(l — ¢) = 20 AU in the (g, ¢) diagram.

With a larger, Uranian-like planet of mass 10~ M, ~
0.5 Saturn mass (model C2), all the particles decay until
they reach a resonance (Fig. 2). Then they are trapped
for a time span comparable to or larger than the decay
time scale, which explains the accumulations observed
in the (a, ) diagram, The first order resonances 1:2,2:3,
and 3:4 are the most effective ones, but second order
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TABLE II
Simulations on the Vax 4500: One Particle,
Double Precision

run planet planet orbit particle particle orbit  particle orbit

id. mass  eccentricity coefl. §  inclination  initial condition
A% B Bl 0 0.3 0 a=30. e=0
A 0 0.3 3¢ g =30. e=0
V3 1 0.61 0.3 a a=130, =0

Note, See Table [ for definitions.

resonances (e.g., 3 : 5at 24,96 AU), third order resonances
(4:7 at 25.79 AU, and 5:8 at 24.29 AU), fourth order
resonances (5:9 at 26.28 AU), or even higher order reso-
nances can also trap particles (Fig. 2e) In Figs. 2¢ to 2g,
the particles trapped in the 2 : 3 resonance are particularly
visible, as they are distributed on two-lobe trajectories.
Also, accumulations of particles near periapses, at —70°
and + 110° from the planet, are clearly visible.

More generally, each (g + 1): g resonance will force
a motion yielding a trajectory with [g + 1] lobes, in the
frame corotating with the planet. Note that the resonances
are well isolated in the (a, €) diagram. However, due to
the superpositions of various trajectories corresponding
to various resonances, and owing to the large eccentricity
of each orbit, these |¢ + 1]-lobe trajectories are mixed
in the physical space. The resulting distribution (see for
instance Fig. 2f) shows residual accumulations at — 70°
and +110° from the planet. It also exhibits a void of
matter around the planet, and corotating with it. This void
is caused by the resonances, which all tend to align the
apoapses of the particle orbits with the star-planet line
(this mechanism being sometimes referred to as the pro-
tection mechanism),

Finally, note that the inner region of the disk is sparsely
populated, even at the end of the run, This is due to the
fact that decay time scales are reduced, once the particles
have had a close encounteder with the planet, and have
thus acquired higher orbital eccentricities, This point will
be discussed again in Section 5.6.

Until 1 = 6000 T, (~4.4 X 10° years, see Fig. 2h),
almost all the particles are locked in a resonance. At this
stage, only ~1000 particles, out of 8192, have had a close
encounter with the planet and have been gjected. The
particles ejected outside the planetary orbit have semima-
jor axes as large as 200 AU, and their pericenters remain
at the planetary orbit, i.e., a(l — &) ~ 20 AU (Fig. 2g).
At T = 7000 T, 8000 particles have been gjected from
the resonances, and at ¢ = 8000 7, (~5.8 x 10° years),
all the particles have been removed from the resonances.

In order to better understand the evolution of the parti-
cles in a given resonance, we now consider a simulation

where all the particles are initially in circular orbits outside
the 1 : 2 resonance (model C3, see Fig, 3). At the crossing
of the 1:2 resonance (28.2 AU for 8 = 0.3), all the parti-
cles are trapped, and their semimajor axes oscillate
around the resonance radius, while their eccentricities
increase (Figs. 3-b,¢). The small oscillations are due to
the fact that the eccentricity vectors of the particles tend
to follow the curves corresponding to the local conserva-
tion of the Jacobi constant (de” « da), while the dissipation
monotonically changes this Jacobi ‘“‘constant.’” This point
is analyzed in detail in Paper 2. When the particle’s eccen-
tricity increases, the rate of incrcase decreases. After
10,000 Ty, the run is stopped and all the particles are still
trapped with eccentricities ~0.4. Double precision runs
carried out with one particle on a Vax 4500 allow ong to
see that the particles which start from 30 AU on circular
orbits remain trapped for almost 22,000 planctary periods
(1.6 x 10% years) before escaping the resonance (see Fig.
6 and Section 5.4).

At a certain stage, the large eccentricity allows the
particles to cross the planet orbit. Nevertheless, close
encounters are avoided because of the resonance protec-
tion mechanism: the particle pericenters oscillate around
a mean position which avoids the planet (Fig. 3¢). An
individual particle then follows a trajectory similar to that
described by Jackson and Zook (1989) in the case of a
capture of a grain into a resonance with the Earth. With
the large number of particles, this gives rise to a wave
pattern trailing the planet with an angle ~ —80° and coro-
tating with it.

This angle is related to the resonant angle ¥, = (g +
DA, — gh — @, where X (resp. Aj) is the mean longitude
of the particle (resp. the planet}, and @ is the longitude
of the pericenter of the particle orbit. The subscript L
refers to Lindblad resonance, as opposed to corotation
resonance; see Section 5.3, For the 12 resonance, g =
—2, so that ¥, = @ — A, when a particle reaches its
pericenter. In this case, the average angle of —80° visible
in Fig. 3c coincides with the value of ¥, . The “*pretzel”
shape obtained here is particular to the 1:2 resonance.
More generally, a swarm of particles locked ina(g + 1): ¢
resonance exhibits a flower-shaped pattern with |g + 1]
petals, avoiding the planet and corotating with it. The
energetics of the resonance requires that ¥ be negative,
to compensate for Poynting—Robertson drag energy loss
{see Paper 2 and references therein).

5.2. 3D Disk with a Circular Planetary Orbit

The particle inclinations are now distributed between
0° and &° with respect to the planetary orbital plane. A
planet with a mass of 107% M, (run C4) has almost no
influence on a thick disk. In contrast to the 2D run shown
in Fig. 1, where almost all the particles had a close encoun-



PERTURBED CIRCUMSTELLAR DISKS

40F

20

1
-20

f=3 =

20 25

semi—Mmajor axis

(b}
t = 4000 Ty

=20

semi—major oxis

30

(e)
¢ = 8000 Ty

1 1 1 1

20 25

semi—major axis

30

eccentricity

eccentricity

eccentricity

49

FIG. 3. Same as Fig. 2, except for the initial conditions: the particles are initiaily in circular orbits between 32 and 33 AU (model C3 in Table

I). (&) Initial conditions. (b} The system after 4000 T, (2.92 x 10° years). (c) the system after 8000 T, (5.84 % 10® years).



50 ROQUES ET AL.

T T T T

T T
(a) 1
t = 4000 TF' :
Jos
2
W
q0.2 &
©
o
]
S
- 4
//
7 L —- 0.1
F
5 /’ e
’ 1 1 40

{b)
£ = 8000 Ty

eccentricity

25 30

semi—major axis

FIG. 4. Same as Fig. 3, except that the disk is now 3D. Particles have initial inclinations randomly distributed between 0° and 8 (model C3
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ter with the planet, the inclined particles are littie per-
turbed, as expected from Eq. (14}, In this case, only 5%
of them have had a close encounter and been ejected.
Thus, the scattering effect of a planet could be important
only for a very flat disk.

We consider now a planet with mass 10~ * M, , the other
parameters being the same as in the previous section (run
C3). The main difference from the planar model is that
about 5% of the particles escape the 1: 2 resonance, when
their eccentricities are between 0.037 and 0.06 (Fig. 4a).
These particles continue their fall until they reach higher
g resenances, closer to the planet (Fig. 4b). The particles
escaping the 1:2 resonance are the more inclined ones:
about 20% of the particles with inclination between 6° and
8° actually escape the resonance. The inclinations of the
particles trapped into the resonance are not statistically
increased, in contrast to the eccentricities. Thus, the

thickness of the disk is not increased by the resonance
mechanism. 2

At the end of the 10,000 T, integration, a large number
of particles are still trapped in the resonance, in contrast
to the 2D case, where all the particles are ejected after
8,000 planet period. The computation of one-particle mo-
tion with an inclination of 8° (model V2 of Table I1) shows
that ejection from the resonance occurs at an eccentricity
similar to the 2D case, that is, ~0.5.

Once trapping into resonance occurs, the eccentricity
first increases rapidly, and then slows down as it ap-
proaches a limiting value. The analysis carried out in
Paper 2 shows that the eccentricity first varies like Vi,
where the time is counted from the entrince into the
resonance. As illustrated in Fig. 4a or 3a, in the case of
the 1:2 resonance, particles which enter the resonance
can escape from it at eccentricities lower than ~0.07.



PERTURBED CIRCUMSTELLAR DISKS 51

3 # oy talp
/
rd
’
5
P
.

(a)

eccentricity

(&)
t = 8000 Ty

0.3

# St M

>
%

/
e

s

-/

0.2

Q.1

FIG. 5.

25

30

eccentricity

semi—major axis

Same as in Fig. 3, except that the planet has an orbital eccentricity of 0.01. The parameters are given in Table I (model C6). {a) The

system after 4000 T, (2.92 x 10 years). (b) The system after 8000 T, (5.84 x 10° years).

Above that value, the particles remain locked in the reso-
nance, and the eccentricities increase at a decreasing rate.
An eqilibrium value e, is in principle possible, for which
the energy dissipated by PR drag is exactly compensated
by the energy provided by the planet. The value of e, is
estimated in Paper 2 for first order resonances. The ques-
tion of the stability of these equilibria is analyzed further
in Section 5.4.

5.3. 2D Disk with FEccentric Planetary Orbit

We consider now a planet with an orbital eccentricity of
0.01. The other parameters are given in Table I (run C6).
With an eccentric planetary orbit, the trapping into the
1:2 resonance is not as efficient as with a planet in a
circular orbit: almost half the particles escape the reso-

nance even though they lie in the planewary orbital plane
(Fig. 5a). However, they are trapped in higher g reso-
nances (Fig. 5b). At the end of the 10,000 T, integration,
the particles are still trapped in the resonance. A computa-
tion of one-particle motion in double precision (run V3,
Table II) shows that gjection occurs at an eccentricity of
0.56, which is larger than the equilibrium eccentricity
computed analytically for a circular planetary orbit, which
is 0.51 (see Eq. (17) and Paper 2).

The particles trapped in the 1:2 resonance form two
arc-like structures, which corotate with the particles, not
the planet (Fig. 5b). Otherwise, they evolve along the
pretzel-shaped curve shown in Fig. 3¢. Actually, two
kinds of resonances are now at work: a Lindblad reso-
nance, associated with the resonant angle ¥, = (¢ +
DDA, — gk — @, and a corotation resonance, associated
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with the angle ¥ = (g + DA, — gk — @, where o, is
the longitude of the planetary pericenter. The Lindblad
resonance excites the particle orbital eccentricity, while
the corotation resonance traps the particle in |g| intervals
of longitude.

This arc forming mechanism has been studied in the
frame of planetary ring arc dynamics (Goldreich ef al.
1986, Sicardy 1991, Porco 1991). It alse bears resemblance
to the arc structures found by Patterson (1987), where the
particles are submitted to a gas drag in the solar nebula,
and are perturbed by a Jovian planet on an elliptic orbit.
As seen in Fig. 5b, even a moderate eccentricity of the
planet induces conspicuous azimuthal asymmetries in the
disk. Note also the depleted region in front of the planet.
1t is caused by the protection mechanism associated with
various Lindblad resonances, as discussed in Section 5.1.
Thus, in contrast to the arc structures, this depleted region
corotates with the planet.

5.4. Temporary or Permanent Trapping?

We have seen that if the particles can reach a critical
eccentricity (roughly 0.07 for the 1: 2 resonance; see Fig.
4a},-then they remain trapped for a iong time until they
reach a high eccentricily leading to planetary orbit cross-
ing. Several questions are then in order: Is the trapping
permanent? Is there an equilibrium orbit? Is it stable? If
not, what is the typical trapping time?

Existence of an equilibrium eccentricity. Analytical
approaches indicate that the eccentricity can reach an
equilibrium value of e.,, for which all the energy provided
by the planet is exactly dissipated through PR drag. The
value of e, depends on the g of the resonance, but nrot
on the dissipation coefficient a, nor on the planetary mass.
This surprising result is discussed by Weidenschilling and
Davis (1985), Beaugé and Ferraz-Mello (1993}, Sicardy et
al. (1993), and in Paper 2. The value of e, 1s given by
(Paper 2)

(g + DA+ el) = gl — el)™, (17)
which shows that e, = 1/V/f|q|, where f depends weakly
on g, and tends to 2.5 for large ¢’s. For the 1: 2 resonance
examined in the next paragraph, ¢,, ~ 0.51.

Stability of the equilibrium eccentricity. The question
of the stability of the equilibrium orbit is, however, a
more difficult matter. Figure 6 shows the motion of a
single particle in the (a, ¢) diagram and in the eccentricity
vector (e cos(¥;), e sin{¥)) diagram. The parameters
arg given in Table I (run V1). The particle is trapped into
the 1:2 resonance for as long as 20,000 planet revolutions
(~1.4 X 10° years). In a first stage, the eccentricity in-
creases, approaching e.,. Then, near e, ~ 0.51, the am-

plitude of oscillations in a increases (Fig. 6a), and the
particle suddenly escapes the resonance and undergoes
a close encounter with the planet,

Fig. 6b analyzes the behavior of the eccentricity vector
(e cos(Wy), e sin(¥)). The dotted curve on the right repre-
sents the locus of points where the particle has an encoun-
ter with the planet. The protection mechanism ensures
that near ¥, = [80°, there is no value of eccentricity for
which the particle can have an encounter. The eccentricity
vector first oscillates in a libration motion with a small
amplitude, and the resonant argument near 80°. When the
eccentricity is about to reach the value ¢, the amplitude
of libration of the eccentricity vector suddenly increases,
so that the particle gets closer to the **dangerouns’” dotted
curve corresponding to encounters. Then, ¥, moves and
oscillates around 80°. The eccentricity reaches (.47 and
the particle escapes the resonance. The study of the exte-
rior resonances phase space shows that, at a certain en-
ergy level, the libration curve splits into two regions cen-
tered on —80° and 80° (Beaugé 1993).

Figure 6c corresponds to the same simulation where
the drag parameter 8 has been set equal (0 zero at different
steps of the previous simulations, that is, when the particle
eccentricity reaches 0.1, 0.2, 0.3, 0.4, and 0.46. Then the
eccentricity vector evolves on the ‘‘osculating’’ libration
curve (see Paper 2, where this technique is described in
detail). Figure 6¢ shows that, until ¢ = 0.3, the libration
curve is symmetrical with respect to the horizontal axis
and becomes narrower and narrower as e increases. For
large eccentricities, the osculating libration curve be-
comes small and asymmetrical, centered on 80°. In other
runs, not shown here, with different initial phase of the
particle, the particle escapes the resonance when the am-
plitude of ¥, becomes large, before ¥, evolves to 80°,

Asfar as we know, there is no analysis yet of the escape
mechanism near e,,. Some comments on this points are
made in Paper 2. The behavior shown in Fig. 6 is quite
archetypal. In fact, we have nor observed any permanent
trapping during any of our integrations. More precisely,
we have not observed any attracting equilibrium orbits.
That is at variance with the results of Greenberg (1978),
Weidenschilling and Davis {1985), Patterson (1987), and
Beaugé and Ferraz-Mello (1993). In these latter cases,
however, the physics of dissipation is different, since it
is associated with gas drag, not PR drag. The larger value
of the dissipation coefficient in the case of gas drag damps
the eccentricity more efficiently. This prevents orbit
crossings, and allows the particles to reach stable equilib-
rium orbits. More work is now needed to understand the
behavior shown in Fig. 6, and in particular the outcomes
of close encounters with the planet. Some estimates of
the trapping time scale can nevertheless be given, as we
see now.
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pericenter distance a(l — ) = 20 AU. Points above the dashed curve correspond to trajectories crossing the planetary orbit. (b) Evolution of
the eccentricity vector e cos(¥(), e sin(¥;), where ¥; is the Lindlad resonance argument. The dotted curve represents the points where the
particles has an encounter with the planet; see the text for details. {c) Evolution of the eccentricity vector if the Poynting—Robertson drag is
stopped when the particle eccentricity is 0.1, 0.2, 0.3, 0.4, or 0.46; see the text for details. There is one point every 20 planet revolutions (1460

years).

Trapping time scale. The variation of eccentricity
with time is estimated in Paper 2. If the eccentricity starts
from zero at the entrance into the resonance, and while

it is still small with respect to e, it varies as

2ot

0=

(18)

Using the value 8 = 0.3, i.e., @ ~ 6.9 X 1077 years™!
(Egs. (7) and (8)), and for instance ¢ = 8000 T; (~5.8 x
10° years) and ¢ = —2, one gets e ~ 0.63. One can see
in Fig. 3c that this overestimates the eccentricity at that
time by a factor of ~2. This is expected because the rate
of change of ¢ slows down, with respect to Eq. (18),
when equilibrium is approached; see Weidenschitling and
Jackson (1993). Another test of Eq. (i8) is provided by
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Fig. 7. The time it takes to reach a given eccentricity is
expected to be proportional to 1/, and thus, also to 1/8.
Since the two runs of Figs. 7a and 7b are made with 8 =
0.3 and 8 = 0.1, respectively, it should take three times
-as long to reach the same eccentricity in the second case,
in good agreement with the results shown in this figure.

A rough estimate of the trapping time is obtained by
calculating the time 1., it takes the eccentricity ¢ 1o reach
the equilibrium value e, ~ 1/V2.5|q| (Eq. (17)). Assum-
ing Eq. (18) holds all way through, this yields

1

Lirap ™ 3

(19}

One must remember that this is a {ower bound, since the
variation of e is slower than expected from Eq. {18) when

approaching e.,. The run VI (Fig. 6) gives a trapping time
of twice this value for the 1:2 resonance.

Thus, even if not permanent, the trapping time is com-
parable to the PR decay time 1/a, i.e., ~10° years for
pm-sized particles. In that sense, resonance trapping may
be an efficient way for accumulating material outside the
planet orbit; see Section 5.8.

Note finally that the trapping time ¢, is expected to
be independent of q. This is actually confirmed by our
simulations: the particles are ejected from the resonances
at about the same time; see, e.g., Fig. 2. Note also that
the eccentricity e and 1., are independent of the planet
mass. This is confirmed again by our runs: for instance,
in Fig. 8, we see that for planctary masses of 10~ and
10~4 M., about the same eccentricities are reached at the
same time, i.e., 4500 T,.
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FIG. 8. Variation of the planet mass. Each panel shows the system after 4500 planetary revolutions (3.29 x 10° years), with various planet
masses m,: () m, = 107% M, ~ 0.5 Earth masses {model CI, see Table 1). (b) m, = 107* M, ~ 5 Earth masses (model C7). (c) m, = 1079 M,
~- 50 Earth masses (model C2).
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FIG. 9. Steady state radial density of particles corresponding to the

simulation of the model C9 (see Table I). The total duration of the run
is 10,000 Ty ~ 0.7 » 10° years. The half maximum density is near the
planet orbit (20 AU). See the text for details.

5.5. Varying the Parameters

The mass of the planet is the most important parameter
in the trapping mechanism. Figure 8 illustrates that there
is a critical planetary mass of ~107° M, , above which
trapping becomes significant. This corresponds to about
one third of Uranus’s mass, or five times Earth’s mass.
With this mass, however, the confining mechanism is visi-
ble for some particles, but it is not strong enough to stop
the fall of the disk onto the star. With a mass of 1074 M,
(about one half of Saturn’s mass), a planet is able to trap
all the particles in one resonance or another. In this case,
they remain locked at the same semimajor axis for more
than 10,000 planctary revolutions (0.7 x 10% years),

It appears difficult to derive an analytical expression
for the probability of capture into a resonance, for a given
planet mass. This problem is addressed in Paper 2 (sece
also the review by Malhotra 1993}, where it is shown that
the capture depends critically on the eccentricity ¢ and
the resonant angle ¥, just at the entrance into the reso-
nance. In an (e, ¥ ) diagram, the regions of capture ex-
hibit complex patterns, with no obvious symmetries or
clear structures. In any case, this study confirms that for
masses larger than ~10~> M, most of the particles with
an initial eccentricity smaller than a few percent are
trapped into a first order resonance (see Figs. 7, 8, and
9 of Paper 2).

The particle size, or more exactly, 8, is also an im-
portant parameter. We have run models with 3 between
0.1 and 0.3, corresponding to ~2.7 to 8 pm particle radii,
in the geometrical approximation (Eq. (7)). In the range
0.1 to 0.3, changing 8 has two effects:

First, the resonance locations are shifted inward as 3
increases (Eq. (16)). Note that for small particles, the

number of exterior resonance radii which lie outside the
planetary orbit decreases. For instance, there are 18 first
order resonances outside the planetary orbit for 8 = 0.1
and only 5 of them for 8 = 0.3. Note also that a swarm
of particles with different sizes have mixed resonance
locations. The 1: 2 resonance varies from 32 AU for 8 =
0to 28 AU for 8 = 0.3.

Second, the value of the dissipation coefficient «, and
thus, the time scale of orbital decay, changes in correspon-
dence with changes in 8. The smaller particles evolve
faster. For particles evolving with gas drag, the probabil-
ity of trapping is modified by the drag coefficient (Kary
et al. 1993). The value of g does not affect the probability
of trapping in our study. We do not see any significant
difference in the number of trapped particles when 8 var-
ies in the range 0.1-0.3. However, note that varying 8
changes two parameters at the same time which can affect
the trapping probability in opposite senses, that is, the
resonance location and the drag coefficient.

5.6. Steady State Dust Distribution

Inner clearing zone. We present in Fig. 9, as an exam-
ple, the steady state radial distribution of dust, with a
planet of mass 10~ * M, , and with 8 = 0.3 (run C9). In
this simulation, several “‘images’’ of the system have been
superimposed, which is equivalent to reintroducing parti-
cles with identical initial conditions as the previous parti-
cles fall toward the star.

Due to the dispersion of eccentricities, the inner edge
is not sharply defined, but we sce nevertheltess that the
disk is strongly depleted when passing from ~25 to 10
AU. The clearing of the inner zone is not due to a trace
of the initial conditions, but actually proceeds from two
mechanisms: (i) particles ejected outside repopulate the
outer regions of the disk; (i) particles falling onto the
star have large orbital eccentricities, and thus also large
dissipation coefficients (Eq. (4)), which explains their
rapid fall. This stems from the fact that the PR drag time
scale, a/a, is proportional to (1 — &2)**/a (Eq. (2)). Since
a = 1/r* (Eq. (4)), the value of o averaged over one orbit
is proportional to 1 — &, Consequently, a/a is propor-
tional to (1 — ¢%°2. For instance, a particle with eccen-
tricity ~0.5 decays twice as fast as a particle in a circular
orbit.

Depleted zone associated to the planet location. The
protection mechanism is such that the particles are at
apocenter when they have a conjunction with the planet.
The resonances with different g yield wavy patterns with
different azimuthal symmetry numbers, which average
out any azimuthal structures, except at conjunction.
Hence, a depletion zone is expected near the planetary
position (see, for instance, Fig. 5b).

Arc-like structures. 1If the planetary orbit is eccentric,
the corotation resonances generate arc-like structures
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with corotate with the particles, nor with the planet, in
contrast to the depletion zone decribed above. Note that
these conspiscuous structures require only a moderate
orbital eccentricity of the planet (1072 in the example of
Fig. 5). Considering the eccentricities of the planets in
the Solar System, such structures should be expected in
many circumstellar disks with embedded planets.

6. DISCUSSION

We have investigated a process in which a planet can
induce large scale structures in a circumstellar disk com-
posed of ~1-20— um-sized particles. In the case of the
B Pictoris disk, we have placed the planet at 20 AU from
the star, in order to match the observations of an inner
clearing zone. The main results that we have obtained are
the following:

« There exists a critical planetary mass of ~107° M,
i.e., about 5 Earth masses, or # Uranian masses, above
which trapping in mean motion resonances is very effi-
cient, in both the 2D and 3D cases.

* We have not observed permanent trappings into the
resonances. However, the trapping time scale is compara-
ble to the PR drag decay time scale, resulting in an accu-
mulation of particles just outside the planet orbit.

* Oncethey escape the resonances, the particles rapidly
decay onto the star, due to their enhanced eccentricities
at that time.

« A moderate (107?) planetary orbital eccentricity can
create large scale azimuthal (arclike) asymmetries in the
disk.

* The protection mechanism associated to the reso-
nances also creates a void region just outside the planet,
and corotating with it.

Radial and azimuthal structures caused by a planet with
mass 107 M, are summarized in Figs. 5b and 9.

Several questions remain open, however. From a
purely dynamical point of view, the problem of the escape
from a resonance, near the equilibrium eccentricity €oys
is not fully understood. Analytical approaches which can
handle large eccentricities properly are now required.
Also, numerical integrations which accurately describe
(singular) close encounters with the planet are needed. In
particular, one can ask whether particles are preferentially
gjected outside or inside the planet orbit. The distribution
of eccentricities for these gjected particles should also be
clarified.

Gas drag and high velocity collisions should also be
considered at some point. The present observations make
it difficult to estimate the neutral gas density in circumstel-
lar disks, but some numerical investigations would be
worthwhile. In view of the universality of resonance dissi-
pation effects, one should expect that gas drag will also
result in resonance trapping and arclike structures. Of
course, this requires some more specific studies.

Finally, this work should be connected to the detection
of infalling material, deduced from red-shifted absorption
lines observed along the line of sight. Models indicate
that this material could be released from evaporating com-
ets on highly eccentric orbits (Beust et al. 1990, 1991,
Beust and Tagger 1993). It is now important to better
assess the perturbing effects of a planet, or several plan-
ets, on a swarm of comets.
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