1 2 3	In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory
4	Authors: P. G. Conrad ¹ , C. A. Malespin ^{1, 2} , H. B. Franz ^{1, 3} , R. O. Pepin ⁴ , M. G. Trainer ¹ ,
5	S. P. Schwenzer ⁵ , S. K. Atreya ⁶ , C. Freissinet ¹ , J. H. Jones ⁷ , H. Manning ⁸ , T. Owen ⁹ , A.
6	A. Pavlov ¹ , R. C. Wiens ¹⁰ , M. H. Wong ⁶ and P.R. Mahaffy ¹
7	
8	Affiliations:
9 10	¹ Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
11	² Universities Space Research Association (USRA), Columbia, MD USA
12	³ CRESST, UMBC, NASA GSFC, Greenbelt, MD 20771 USA
13	⁴ University of Minnesota, Minneapolis, MN 55455, USA
14 15	⁵ The Open University, Department for Environment, Earth and Ecosystems, Walton Hall, Milton Keynes MK6 3AQ, United Kingdom.
16 17	⁶ Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109-2143, USA.
18	⁷ XI-3, ARES, NASA/JSC, Houston, TX 77058 USA
19	⁸ Concordia University, Moorhead, MN 56562 USA
20	⁹ University of Hawaii, Honolulu, HI 96822 USA
21	¹⁰ Los Alamos National Laboratory, Los Alamos NM 87545 USA
22	
23	*Correspondence to: <u>Pamela.G.Conrad@nasa.gov</u>
24	
25	
26	
27	

28 Abstract Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has 29 measured all of the stable isotopes of the heavy noble gases krypton and xenon in the 30 martian atmosphere, *in situ*, from the Curiosity Rover at Gale Crater, Mars. Previous 31 knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon 32 a combination of the Viking mission's krypton and xenon detections and measurements 33 of noble gas isotope ratios in martian meteorites. However, the meteorite measurements 34 reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon 35 and krypton isotopic measurements reported here include the complete set of stable 36 isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite 37 measurements but also provide a unique opportunity to identify various non-atmospheric 38 heavy noble gas components in the meteorites. Kr isotopic measurements define a solarlike atmospheric composition, but deviating from the solar wind pattern at ⁸⁰Kr and ⁸²Kr 39 40 in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than ¹³²Xe have been 41 42 enriched to varying degrees by spallation and neutron capture products degassed to the 43 atmosphere from the regolith, and a model is constructed to explore this possibility. Such 44 a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy 45 phases of martian meteorites.

46

47 Keywords

48 Krypton; xenon; Mars atmosphere; Mars evolution; Mars Science Laboratory; Mars
49 meteorites

50

51 **1. Introduction**

52 The noble gases are key indicators of planetary evolution. Krypton and xenon are 53 especially useful with their large numbers of stable isotopes; six and nine respectively, 54 making them ideal for tracking source reservoirs and for understanding the evolution of 55 planetary interiors and atmospheres. Many of the isotopes are formed or fractionated by 56 distinct mechanisms, so their enrichment or depletion can be informative with regard to source: ¹²⁹Xe is produced by decay of ¹²⁹I, a now extinct radioactive nuclide with a half-57 life of 15.7 Myr. Isotopes ¹³¹Xe, ¹³²Xe, ¹³⁴Xe and ¹³⁶Xe are produced by actinide fission. 58 Radiogenic ¹²⁹Xe and ¹³⁶Xe can be used (along with other noble gas isotopes) to test 59 hypotheses for atmospheric formation and loss: their ¹²⁹I and ²⁴⁴Pu parent species 60 61 abundances at the time of Earth and Mars' formation are constrained by their radiogenic 62 daughters in the atmospheres. Comparison of planetary interior values (trapped in mantle 63 phases of igneous rocks) with atmospheric abundances and solar wind abundances can reveal how long ago ¹²⁹Xe and ¹³⁶Xe were degassed (Podosek and Ozima, 2000). Excess 64 ¹²⁹Xe relative to ¹³⁰Xe in Mars' atmosphere relative to interior components supports the 65 66 hypothesis that Mars degassed soon after planetary accretion, while fractionation of Xe 67 isotopes in the martian atmosphere may indicate substantial loss of atmosphere in a very 68 early hydrodynamic escape phase (Pepin, 1991, 2000).

69

70 Previous to MSL, what we knew about martian noble gases was based on the noble gas

71 measurements of Viking (Owen and Biemann, 1976; Owen et al., 1976; Owen et al.,

1977) and the analyses of meteorites ejected from Mars. These meteorites: shergottites

73 (Treiman and Filiberto, 2015), nakhlites (Treiman, 2005), chassignites (Treiman et al.,

74 2007), ALH84001 (Treiman, 1998) and the basaltic breccia NWA7034 (Agee et al.,

2013) are petrologically distinct from primitive chondritic meteorites, and the
compositional similarity of gases trapped in their impact melt inclusions to Mars'
atmospheric values is what identified them as martian (Bogard and Johnson, 1983; Pepin,
1985; Wiens and Pepin, 1988). But martian meteorites all contain more than one noble
gas component, and measurements therefore return a composite of unfractionated or
fractionated martian atmosphere, martian interior gases, fission and cosmogenic
additions, and terrestrial contamination.

82

An elementally unfractionated martian atmospheric component was first found in shock 83 84 melt inclusions in the shergottite EETA 79001 (Bogard and Johnson, 1983; Becker and 85 Pepin, 1984; Wiens et al., 1986; Swindle et al., 1986), establishing the link between the 86 SNC meteorites and Mars. The Xe composition was found to be isotopically distinct from all other known xenon reservoirs, especially in its high 129 Xe/ 132 Xe ratio and 87 enhanced ¹³⁴Xe/¹³²Xe and ¹³⁶Xe/¹³²Xe ratios (Swindle et al., 1986). This atmospheric 88 89 component was refined using a range of shock melts from four different shergottites, resulting in a recommended 129 Xe/ 132 Xe ratio of 2.60 ± 0.05 for Mars' atmosphere 90 91 (Bogard and Garrison, 1998). Most recently, a martian brecciated meteorite (NWA7034, 92 'Black Beauty') (Agee et al., 2013) was shown to contain dominantly unfractionated 93 martian atmosphere (Cartwright et al., 2014), providing evidence that this component is 94 not unique to the shergottites. Elementally fractionated Martian atmospheric 95 component(s) are found in the nakhlites and ALH84001 (Swindle, 2002) and the Martian 96 interior component was first identified in the Chassigny meteorite (Ott, 1988).

97

98 Terrestrial air can introduce both unfractionated and fractionated contamination to 99 meteorites, with the latter mimicking interior signals (Mohapatra et al., 2009) or 100 completely masking martian signatures (Schwenzer et al., 2013). Disentangling those 101 components is key to understanding processes such as planetary formation. It also 102 provides insights into surface-atmosphere interaction and ejection history, but only at the 103 precision with which the individual components are known and understood. Precise in 104 situ measurements of Xe and Kr in Mars' atmosphere are not hampered by complications 105 introduced by "contaminating" noble gases.

106

107 2. Experimental

Previously, we reported measurements of the stable isotopes of argon $({}^{40}\text{Ar}/{}^{36}\text{Ar} = 1.9 \pm$ 108 0.3×10^3 and ${}^{36}\text{Ar}/{}^{38}\text{Ar} = 4.2 \pm 0.1$ (Atreva et al., 2013; Mahaffy et al., 2013). The 109 ⁴⁰Ar/³⁶Ar ratio used dynamic mass spectrometry to directly measure these masses. To 110 obtain the ratio of ³⁶Ar to ³⁸Ar, it was necessary to develop a semi-static enrichment 111 112 experiment to reach sufficiently high signal-to-noise (S/N) and background contrast for measurement of ³⁸Ar, the least-abundant Ar isotope (Atreya et al., 2013). However, while 113 114 semi-static experiments provided moderate S/N and low enough background contrast to 115 also enable Kr isotope measurements, they were unable to enrich the Xe signals to the 116 extent necessary for precise isotopic measurement. That required development of a fully 117 static mass spectrometry experiment (Table 1).

118 2.1 Static Mass Spectrometry

119 The relevant components of the SAM suite are described in Mahaffy et al. (2012). Gas is

120 ingested, flowing through both zeolite (Linde 13x) and magnesium sulfate chemical

121	scrubbers, effectively removing >95% of the CO_2 and H_2O , and weakly adsorbing all	
122	other active gases. The post-scrubber gas mix is enriched in N_2 , Ar, Kr, and Xe, which	
123	then flows over a cooled hydrocarbon (HC) trap to efficiently trap out Xe, allowing other	
124	gases to pass. The HC trap consists of three adsorbents in series, Tenax [®] TA, silica beads,	
125	and carbosieve [®] . The approach and scripting were validated in the SAM high fidelity test	
126	bed at Goddard Space Flight Center.	
127 128	The tunable laser spectrometer (TLS), which has been evacuated prior to atmospheric	
129	ingestion, is used as a storage volume so that gases not trapped out on the HC trap,	
130	particularly Kr, are collected here for later analysis.	
131 132	The enrichment flows gas over the scrubbers and trap for 5400 seconds, after which the	
133	HC trap and TLS are closed off from the rest of the SAM manifolds. The manifolds are	
	evacuated, and the scrubbers activated to clean them of adsorbed gas.	
134	evacuated, and the scrubbers activated to clean them of adsorbed gas.	
134 135 136	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass	
134 135 136 137	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the	
134 135 136 137 138	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been	
134 135 136 137 138 139	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been released into the manifold, the valve to the pump is closed, and the remaining gas is	
134 135 136 137 138 139 140	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been released into the manifold, the valve to the pump is closed, and the remaining gas is scanned in fully static mode. The low abundance of Xe allows fully static mode without	
134 135 136 137 138 139 140 141	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been released into the manifold, the valve to the pump is closed, and the remaining gas is scanned in fully static mode. The low abundance of Xe allows fully static mode without increasing the pressure inside the mass spectrometer to a saturated level. The masses of	
134 135 136 137 138 139 140 141 142	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been released into the manifold, the valve to the pump is closed, and the remaining gas is scanned in fully static mode. The low abundance of Xe allows fully static mode without increasing the pressure inside the mass spectrometer to a saturated level. The masses of interest (the nine stable Xe isotopes) are scanned. Once analysis of Xe is complete, the	
134 135 136 137 138 139 140 141 142 143	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been released into the manifold, the valve to the pump is closed, and the remaining gas is scanned in fully static mode. The low abundance of Xe allows fully static mode without increasing the pressure inside the mass spectrometer to a saturated level. The masses of interest (the nine stable Xe isotopes) are scanned. Once analysis of Xe is complete, the manifolds and MS are evacuated prior to releasing the Kr-enriched gas from the TLS.	
 134 135 136 137 138 139 140 141 142 143 144 	evacuated, and the scrubbers activated to clean them of adsorbed gas. Xe-enriched gas collected on the trap is slowly released into the quadrupole mass spectrometer (QMS) in a semi-static scanning mode, where the conductance out to the pump is throttled to increase the S/N in the MS. Once the majority of the gas has been released into the manifold, the valve to the pump is closed, and the remaining gas is scanned in fully static mode. The low abundance of Xe allows fully static mode without increasing the pressure inside the mass spectrometer to a saturated level. The masses of interest (the nine stable Xe isotopes) are scanned. Once analysis of Xe is complete, the manifolds and MS are evacuated prior to releasing the Kr-enriched gas from the TLS. The QMS is returned to semi-static mode for analysis of Kr; static mode being too risky	

146 at the same time in this method a direct measurement of the 84 Kr/ 132 Xe elemental ratio 147 could not be obtained, nor could 84 Kr/ 36 Ar since the enrichment of 36 Ar saturates the 148 detector.

149

150 2.2 Data processing.

151 Experimental Kr and Xe data were corrected for detector dead time, mass discrimination 152 (Appendix A1), quadrupole mass spectrometer (QMS) tuning effects, and instrument 153 background, as discussed in Franz et al. (2014). Because the background as well as 154 analytic signal grew with time during the semi-static and static QMS modes utilized for 155 Kr and Xe measurements, background models were based on tracer m/z representative of 156 the instrument background. For Kr, a tracer of m/z 12 was used in experiment ID #25111 157 and m/z 79 in ID #25269. For Xe, m/z 127 was used as the tracer in both ID #25253 and 158 ID #25269. The background model is implemented by scaling the trend exhibited by the 159 tracer m/z based on the relative proportions of the analyte and tracer m/z during the 160 background region prior to introduction of Xe or Kr gas to the manifold. Uncertainties in 161 the background model were computed from the difference in isotope ratios derived with 162 the nominal background model as described above and an alternate model. For Kr, the 163 alternate background model used a tracer of m/z 55 in ID #25111 and m/z 63 in ID 164 #25269. For Xe, the alternate background model for both ID #25253 and ID #25269 used 165 a constant value at each relevant m/z, acquired before the Xe analysis region. 166

167 **3. Results and Discussion**

168	The number N of individually measured and corrected isotope ratios, their standard
169	deviation and standard error of their mean (s.e.m.), and assessment of total error are set
170	out in Tables 2 and 3 for all Xe and Kr analyses. A total of ~5000 individual ratios were
171	included in the analyzed regions of the four experiments. Graphical displays of
172	measurements vs. time, selected to include data sets for both low and high abundance Xe
173	and Kr isotopes, are shown in Appendix A4. Tabulations of all Kr and Xe isotope ratio
174	data used in the analyses, corrected for backgrounds, peak shapes and mass
175	discriminations, are contained in Appendix A7.
176	
177	The SAM isotopic compositions reported here for Xe and Kr in Mars' atmosphere are
178	averages of results obtained in the repeated experiments, #25253 and #25269 for Xe and
179	#25111 and #25269 for Kr. These were calculated in two ways from the separate
180	experiment results: (a) unweighted averages with s.e.m. errors given by their standard
181	deviation/ $\sqrt{2}$; or (b) $1/\sigma_j^2$ -weighted averages where σ_j is the ± 1 sigma error in each of
182	the two experiments. The first ignores errors in the individual experiment
183	measurements, the second takes them explicitly into account. Final Xe and Kr
184	compositions calculated using both averaging protocols are listed in Tables 2 and 3.
185	
186	3.1 Xenon.
187	Comparisons of the experiment ID#25253 and ID#25269 averages in Table 2 show
188	satisfactory reproducibility of the separately measured isotopic compositions. Differences
189	between the individual isotope ratio sets (e.g. $[^{124}Xe/^{132}Xe \pm \sigma]_{25269}$ - $[^{124}Xe/^{132}Xe \pm \sigma]_{25269}$

 σ_{25253}) are all <60% of the errors in the differences; across the Xe spectrum they average

191 ~30%. This agreement is reflected in the close correspondence of the unweighted and 192 $1/\sigma^2$ -weighted averages in Table 2, within —and for isotope masses > 126 well within— 193 their associated uncertainties. In this case it seems appropriate to select $1/\sigma^2$ -weighted 194 averaging: it biases results toward the more precise experiment #25269 data, and also 195 generates more conservative errors than unweighted averaging.

196

Atmospheric Xe isotope ratios relative to ¹³²Xe generated from the SAM data in this way 197 198 are plotted in Fig. 1 relative to the composition of Genesis SW-Xe (Meshik et al., 2015), 199 together with measurements listed in Table 2 on shergottite glasses from EETA79001 200 (Swindle et al., 1986) and EETA79001 + Zagami (Mathew et al., 1998). Error bars are 201 shown where they exceed the symbol sizes. Effects of adopting unweighted instead of $1/\sigma^2$ -weighted averaging are indicated by the white squares at ¹²⁴Xe and ¹²⁶Xe. The two 202 203 averaging protocols yield statistically indistinguishable results at these minor isotopes, 204 and in fact for all isotopes.

205

206 The solid curve in Fig. 1 represents Meshik et al's SW-Xe mass-fractionated in

207 hydrodynamic escape (Appendix A6) to the degree required for best fit the EETA79001

and EETA + Zagami measurements. Correspondence of the curve with the meteorite

209 data is striking. The SAM atmospheric measurements for isotopes heavier than ¹²⁶Xe

210 generally follow the same pattern. Averaged δ^{128} Xe and δ^{130} Xe- δ^{136} Xe ratios in Fig. 1

agree with the fractionation curve, and therefore with the meteorites, to within $\sim 25\%$ or

212 less. These direct *in situ* measurements support the conclusion from the meteorite data

that the base composition of atmospheric Xe on Mars, except for the large radiogenic

214	¹²⁹ Xe contribution, is fractionated solar Xe (Pepin, 2000). This conclusion is reinforced
215	by the observation that Mars' interior (i.e., mantle) Xe is very similar to SW-Xe (Jakosky
216	and Jones 1997; Swindle and Jones, 1997; Ott, 1998; Swindle, 2002).

218 However significant offsets of the nonradiogenic atmospheric ratios from the curve are evident, large for δ^{124} Xe and δ^{126} Xe, smaller for δ^{128} Xe and δ^{131} Xe but still up to > 5x 219 220 their mean errors above the average meteorite ratios. The origins of these nonradiogenic 221 excesses are presently not understood. There are no identified analytic mass interferences 222 at these isotopes that could account for them, from products found in SAM that could be 223 contaminants in the gas processing manifold or mass spectrometer. We have calculated 224 the potential effect of masses that could be associated with the degradation of the SAM 225 derivatisation reagent N-Methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide 226 (MTBSTFA), vapors of which were previously reported to have been released and 227 detected as a hydrocarbon background in SAM solid sample analyses (Glavin et al., 228 2013) and find that such a background subtraction would still be insufficient to account for the elevated ¹²⁴Xe and ¹²⁶Xe (Appendix A3). However small background signals are 229 230 indeed seen at these masses, whatever their origin. These were incorporated into the 231 background model and subtracted to yield corrected isotope ratios. It is interesting to note 232 that Viking also detected high abundances at the trace masses 124 and 126, though they 233 were unable to report them quantitatively (Owen et al., 1977). Although attributed to 234 hydrocarbon contamination, they could alternatively suggest the interesting possibility 235 that these, in part, were the first hint of elevated light masses of Xe in the martian 236 atmosphere.

238	Another possible explanation for elevation of the light Xe isotope ratios above the SW	
239	fractionation curve, discussed in Sec. 3.3.1, is the presence of spallogenic and neutron-	
240	capture Xe produced by galactic cosmic ray (GCR) irradiation of target elements in soil	
241	and rocks on or near the martian surface and released over time into the atmosphere. Such	
242	degassing of a regolith product generated from neutron-irradiated Br is a likely	
243	explanation for the presence of excess ^{80,82} Kr in the atmospheric Kr trapped in the	
244	shergottite glasses (Sec.3.2).	
245		
246	3.2 Krypton.	
247	SAM measurements at $m/z = 78$ were compromised by a large unresolved interference,	
248	most likely due to known benzene or dichloropropane fragmentation contaminants in the	
249	gas processing system. 78 Kr/ 84 Kr ratios are therefore not reported. Some of the other	
250	isotope ratios measured in the two Kr experiments show more scatter than is present in	
251	the Xe experiments. For ⁸⁰ Kr/ ⁸⁴ Kr and ⁸⁶ Kr/ ⁸⁴ Kr in particular, differences in ratio	
252	averages exceed the errors in their differences by a factor of ~ 2 (Table 3). It is possible	
253	that dissimilar experimental techniques, including different gas pathways and scanning	
254	sequences for experiments #25111 and #25269, could have played a role. Modification of	
255	the method for Kr isotope measurements in #25269 was necessary in order to achieve the	
256	static mode for Xe isotope measurements, although the Kr was measured in semi-static	
257	mode (sec. 2.1). There is no evidence, however, that either of these analyses by itself is	
258	the better representative of atmospheric Kr composition. In this situation unweighted	
259	averaging of the data sets is the more conservative choice since the s.e.m. values overlap	

both of the individual experiment ID averages while errors associated with $1/\sigma^2$ -weighted averages do not (Table 3). However, the uncertainty shown in the table for averaged 83 Kr/⁸⁴Kr is unrealistically small (~±1.5‰) compared to other isotopes. It likely reflects fortuitous agreement of this ratio in the two experiments. An alternative and perhaps overly conservative estimate is the average uncertainty of ~±18‰ in the separate experiment measurements (Table 3).

266

267 Figure 2 shows the averaged data from the SAM experiments compared to the solar wind 268 (Meshik et al., 2014) and meteorite compositions. The SAM Kr isotopic distribution agrees with the SW composition within $\pm 1\sigma$ uncertainty at ⁸⁶Kr, and also at ⁸³Kr if the 269 270 plotted alternate error suggested above is adopted, but show substantial enrichments above the SW trend for the light isotopes ⁸⁰Kr and ⁸²Kr. Elevations above SW-Kr at these 271 272 two isotopes, although at considerably lower levels, are also observed in Kr trapped in shock glasses from the EETA79001 shergottite (Fig. 2) and are thought to result from 273 neutron capture in Br via 79,81 Br(n, $\gamma\beta$)^{80,82}Kr (Becker and Pepin, 1984; Swindle et al., 274 275 1986: Rao et al., 2002). Moreover, there is evidence that these excesses originated on 276 Mars, and are not due to capture of neutrons generated by in-space GCR irradiation 277 during meteorite transits from Mars to Earth (Swindle et al., 1986; Rao et al., 2002). 278

The relative magnitudes of the ^{80, 82}Kr excesses measured by SAM support the capture hypothesis. If the ⁸⁰Kr elevations are due solely to ⁷⁹Br($n,\gamma\beta^{-}$)⁸⁰Kr reactions, one can calculate from the ⁷⁹Br and ⁸¹Br neutron capture cross sections what the corresponding enhancement at ⁸²Kr from ⁸¹Br(n,β^{-})⁸²Kr would be. Sums of resonance integrals for high,

283	epithermal, and thermal energy neutron capture in ^{79,81} Br (Dorval et al., 2008) yield an
284	80 Kr/ 82 Kr production ratio of 2.58 ± 0.25, indistinguishable from the ~2.5 ratio that
285	accounts for ⁸⁰ Kr and ⁸² Kr excesses in large chondritic meteorites (Marti et al., 1966).
286	Application of Dorval et al.'s production ratio to the excesses above solar of ^{80,82} Kr
287	observed in both the SAM and meteorite data (Table 3, Fig. 2) yields the corrected
288	80,82 Kr/ 84 Kr ratios indicated by the diamond symbols in Fig. 2. Corrected 80 Kr/ 84 Kr is
289	solar ($\delta = 0$) by assumption. The n-corrected SAM ⁸² Kr/ ⁸⁴ Kr ratio falls at $\delta = -6$ ‰, a
290	nominal reduction of $\sim 60\%$ from the measured value. The attached error bar includes the
291	⁸² Kr/ ⁸⁴ Kr measurement error plus augmentations due to uncertainties in measured
292	80 Kr/ 84 Kr and the 80 Kr/ 82 Kr production ratio.

It is evident that the ⁸²Kr/⁸⁴Kr ratios, without their n-capture components, are close to solar for both the meteorite measurements and those reported here for the atmosphere if the corrected ⁸⁰Kr/⁸⁴Kr ratios are likewise solar. This strengthens the view that Mars' base atmospheric Kr composition is in fact solar, overlain by neutron capture components at ^{80,82}Kr. An unexplained puzzle is why the meteorite glasses, which purport to sample the recent atmosphere, display much smaller n-capture excesses than those in the presentday atmosphere (Fig. 2).

301

Garrison and Bogard (1998) propose that enrichments of ⁸⁰⁻⁸³Kr/⁸⁴Kr and a depletion of
 ⁸⁶Kr/⁸⁴Kr relative to the solar composition, observed in one sample of EETA 79001
 impact glass, signal the presence of mass-fractionated solar Kr in which an ⁸⁰Kr excess is
 absent or minor. However, both the meteorite and direct atmospheric measurements in

Fig. 2, including those of Swindle et al. (1986) which are viewed as the most precise forthe meteorites, show no evidence for such fractionation.

308

309 3.3 Regolith-derived spallation and neutron-capture Xe and Kr in the martian

310 atmosphere?

311

312 3.3.1 Xenon.

313 Excesses in δ^{124} Xe and δ^{126} Xe are often signatures of spallation Xe components. Their

314 presence in the SAM data suggests that the martian atmosphere may contain spallogenic

and neutron capture products generated in and outgassed from the regolith (Rao et al.,

316 2002). Assuming that atmospheric spallation and $(n,\gamma\beta)$ components are actually present

in the atmosphere, corrections to the SAM measurements were calculated using the

318 following parameters:

319 3.3.1.1. *A REE/Ba wt.% ratio of 0.54*. GCR spallations of Ba and the rare earth

elements (REE) are the dominant contributors to spallogenic Xe. Spallation Xe

321 production rates for these elements are given in Hohenberg et al. (1978). They are

322 calculated using a ratio of 6.9 for REE abundances summed from Ce to Er, relative to La

323 abundance. Of interest for this model is Hohenberg et al.'s (Ce + Pr)/La ratio of 3.0. In

the 6 SNC meteorites for which data exist in the Lodders (1998) compilation, this ratio is

325 3.0 ± 0.5 . Although there are insufficient SNC abundance data to enable similar

326 comparisons for most of the heavier REEs, this agreement suggests that they are also

327 likely to be approximately compatible with Hohenberg et al.'s REE distributions. The

328 SNC La/Ba ratio is $0.069 \pm 10\%$ (Lodders, 1998), and therefore "La"/Ba, with "La"

including all the REE targets, is probably reasonably close to 0.069 x (1 + 6.9) = 0.54.
REE concentrations on Mars are unknown. The REE/Ba ratio of 0.54 that arguably
characterizes the SNC meteorites is taken as proxy for the martian regolith.

332

333 Spallation production rates used in this modeling are from (Hohenberg et al., 1978),

calculated for a La/Ba ratio set to 0.069 and an adjustable Ba abundance (Sec. 3.3.1.3).

They are integrated over a regolith depth of \sim 500 g/cm². The resulting spallation

336 composition is listed in Table 4. To account for the present atmospheric overburden of

 $\sim 17 \text{ g/cm}^2$ the regolith surface was repositioned to 17 g/cm^2 and production rates were

integrated from this depth to 500 g/cm². No attempt was made to calculate production
rate variations due to different —and unknown— atmospheric densities that could have
occurred over the past 3700 Ma.

341

342 3.3.1.2. *A* 43% regolith degassing efficiency. Martian Br is taken to be 36 ppm, about 343 midway in the concentration range measured by Pathfinder (Gellert et al., 2004) and 344 Curiosity (Blake et al., 2013). Combined with modeling of neutron capture by ⁷⁹Br in the 345 regolith (Rao et al., 2002) the ⁸⁰Kr excess measured by SAM (Fig. 2) requires 43% 346 degassing of the regolith inventory produced over 3700 Ma by GCR-generated neutrons. 347 This 43% release is assumed to apply to spallogenic and $(n,\gamma\beta)$ Xe products as well. 348 349 3.3.1.3. With these choices, the Ba concentration in the martian regolith is a free

350 *parameter in the model.* Results of applying it to the static experiment #25269 Xe

351 measurements, the more precise of the two data sets, are shown in Fig. 3. Barium

352	abundance was adjusted until spallation-corrected δ^{124} Xe and δ^{126} Xe were equally spaced	
353	on either side of the fractionated SW curve, both within $\sim 1\sigma$ error of the curve or less	
354	(Fig. 4). Required Ba concentration in this baseline model is 602 ppm. Other fits of	
355	corrected δ^{124} Xe and δ^{126} Xe to fractionated SW are possible; for example, error-	
356	weighting their positions relative to the curve, which would move δ^{124} Xe closer and	
357	δ^{126} Xe further away. But this has only a minor (<10%) effect on required Ba.	
358		
359	Effects on isotope ratios of subtracting calculated spallation and neutron capture	
360	components are set out numerically in Table 4 and plotted in Fig. 3 and, at higher	
361	resolution, in Fig. 4. Essentially all of the δ^{128} Xe excess is removed by spallation	

correction. Additional production of ¹²⁸Xe by ¹²⁷I($n,\gamma\beta$)¹²⁸Xe capture is probably minor. 362

363 Estimates for iodine in the martian regolith range from ~100 ppb in three non-Antarctic,

presumably uncontaminated SNCs (Lodders, 1998) to ~500 ppb with large uncertainty 364

365 (Rao et al., 2002). Correction for production from iodine at the 100 ppb level is negligible

366 $(\sim 1\%)$, and only $\sim 10\%$ even with 10x this abundance (Table 4). Spallation corrections to

measured δ^{130} Xe and δ^{131} Xe are small (< 5‰). Most of the δ^{131} Xe excess is attributable 367

to n-capture in Ba, but the 130 Ba $(n,\gamma\beta)^{131}$ Xe contribution is uncertain because the 368

production rates given by Rao et al. (2002) and estimated from Hohenberg et al. (1978) 369

370 differ by a factor of ~20, due primarily to a ~6-fold difference in adopted capture cross

sections. Using the log average of the two 130 Ba $(n,\gamma\beta){}^{131}$ Xe production rates —1.9 x 10¹⁵ 371

atoms/s for Ba = 602 ppm in the baseline model— corrects δ^{131} Xe to within 10‰ of the 372

373 fractionation curve, but with the large uncertainties shown in Table 4 and Fig. 3. Other

374	isotope ratios (δ^{134} Xe, δ^{136} Xe, and 129 Xe/ 132 Xe) are essentially unchanged by spallation
375	subtraction. Fig. 4 demonstrates that correction of the measured ID #25269 isotope ratios
376	for the assumed presence of atmospheric spallation and $(n,\gamma\beta)$ products leads to notable
377	agreement with the fractionated SW and shergottite glass compositions. All corrected
378	isotope ratios fall within error in the $\pm 10\%$ band around the fractionated SW reference
379	composition, and only δ^{134} Xe is >1 σ away from the reference.

381 The 602 ppm Ba content obtained for the baseline model is sensitive to adopted values of 382 a number of parameters: (a) the ¹³²Xe atmospheric volume mixing ratio (VMR), not 383 measured directly by SAM (Sec. 2.1) but derived from the measured ³⁶Ar VMR in Mars' atmosphere (Atreya et al., 2013; Mahaffy et al., 2013) and an estimate of ¹³²Xe/³⁶Ar from 384 385 the shergottite glasses (Garrison and Bogard, 1998); (b) the La/Ba ratio in the martian 386 regolith (Sec. 3.3.1.1); and (c) the regolith Br abundance which sets the regolith 387 outgassing efficiency (Sec. 3.3.1.2). The latter has the most severe impact on Ba 388 requirements. As regolith Br is varied over its most likely range of $\sim 20 - 60$ ppm (Blake 389 et al., 2013; Gellert et al., 2004) with corresponding changes in regolith degassing 390 efficiencies from 76% to 26% respectively, the Ba concentrations needed to replicate 391 Figs. 3 and 4 range from 340 to 1020 ppm. Variations in any of these parameters produce 392 proportional changes in required Ba, and so one cannot specify a single regolith Ba 393 content that uniquely generates Figs. 3 and 4. However the model is resilient to parameter 394 variations in the sense that a particular Ba value can always be found that reproduces the 395 corrected composition in the figures. Varying these parameters within their probable 396 uncertainty ranges leads to a spread in required Ba of ~200 to 1000 ppm.

398 3.3.1.4. *Barium*. Barium in martian soils and rocks has been measured by Curiosity's 399 ChemCam LIBS instrument. Estimates range from a few 10's of ppm in sand and soil up 400 to ~1640 ppm in a trachyte rock (Ollila et al., 2014; Payré et al., 2016); the majority of 401 the measurements fall between ~100 and 500 ppm (Payré et al., 2016). The Ba 402 concentration of~600 ppm in the baseline spallation model is significantly above their 403 average. However, the \sim 200-1000 ppm spread in required Ba concentrations generated by 404 variations in modeling parameters falls with the range of LIBS measurements reported by 405 Payré et al. 406 407 Within its uncertainties, the Ba content of the martian regolith required by the model may 408 be compared to the ~250 ppm estimate for Earth's bulk crust (McLennan, 2001; Payré et 409 al., 2016) and ~350 ppm in ocean island basalts (OIB) (Sun and McDonough, 1989). The 410 REE/Ba ratio of 0.54 adopted for Mars is close to Sun and McDonough's OIB value of 411 ~0.56 and intermediate between ~0.34 in Earth's bulk continental crust (McLennan, 412 2001) and ~1.2 in oceanic crust (White and Klein, 2014), consistent with the more mafic 413 nature of the martian surface compared to the terrestrial continental crust. 414 415 3.3.1.5. Comparison with Xe trapped in shergottite glasses. This spallation scenario is 416 potentially capable of accounting for observed excesses in the SAM Xe data at

417 nonradiogenic isotopes lighter than 132 Xe. It conflicts, however, with evidence that shock

418 glasses in shergottites record the composition of the martian atmosphere. Xe trapped in

419 glassy phases of EETA79001 (Swindle et al., 1986) and EETA79001 + Zagami (Mathew

420 et al., 1998), plotted in Fig. 1, shows no evidence for the presence of atmospheric 421 spallation or neutron capture Xe. These meteorites do display spallogenic enrichments in 422 the light Xe isotopes, particularly in Zagami with its long exposure age, but these are 423 consistent with production in space by GCR spallation during post-ejection transit from 424 Mars to Earth (Swindle et al., 1986; Mathew et al., 1998). When these in situ spallation products are subtracted, δ^{124} Xe, δ^{126} Xe, and δ^{128} X ratios in the glasses fall close to the 425 426 SW fractionation curve (Fig. 1) with no evident way to accommodate additional 427 atmospheric spallation or $(n, \gamma\beta)$ components. 428

429 This could be a telling argument against the spallation hypothesis if the light isotope 430 enhancements recorded by SAM could be shown to be attributable to hydrocarbon 431 interferences, but no plausible candidates among species known to be present in the QMS 432 analytic system have been identified (Appendix A3.1). The alternative to instrumental 433 interferences, where the SAM light isotope signatures are taken to be true measures of 434 atmospheric composition, would seem to require a specific degassing history for the 435 martian regolith in which the bulk of spallation Xe products was released after the 436 shergottite glasses had acquired their trapped atmosphere. However, there is relatively strong evidence that ^{80,82}Kr from neutron capture in regolith Br was degassed to the 437 438 atmosphere and incorporated into the glasses (Sec. 3.2). At the moment neither of these 439 potential explanations, either SAM hydrocarbon interferences or an arbitrarily 440 constructed spallation degassing scenario, is particularly robust. 441

442 3.3.2. Atmospheric fission Xe on Mars?

Mars' atmosphere is notable for the large ¹²⁹Xe excess displayed by the SAM and
shergottite glass measurements in Figs. 1 and 3, yet in none of these data sets are there
discernable elevations of heavy isotope ratios that would signal the existence of a ²⁴⁴Pu
fission Xe component expected to accompany outgassed radiogenic ¹²⁹Xe (Swindle and
Jones, 1997). Models suggesting that Pu-Xe is actually present but concealed, and their
status from the perspective of the meteorite and SAM data in Tables 2 and 4, are
discussed in Appendix A5.

451 3.3.3 Krypton.

The elevated atmospheric 80,82 Kr/ 84 Kr ratios measured by SAM (Sec. 3.2) appear to be 452 453 consistent with addition of a Kr component generated in the regolith by neutron capture 454 in Br. One would expect that release of these products into the atmosphere would be 455 accompanied by degassing of Kr produced by GCR spallation of Rb, Sr, and other target 456 elements. However, unlike the case for the light Xe isotopes, addition of spallogenic Kr 457 has only a minimal and undetectable effect on measured Kr isotopic abundances. 458 Average regolith Rb (65 ppm) and Sr (225 ppm) concentrations are reported by (Payré et 459 al., 2016) and estimates of Y/Sr (~0.74) and Zr/Sr (~0.37) by (Clark et al., 1976). Using 460 elemental production rates from these elements (Hohenberg et al., 1978) and the 43% degassing efficiency of regolith inventories required by the SAM ⁸⁰Kr excess and the 461 462 selected martian Br concentration of 36 ppm (Sec. 3.3.1.2), calculated spallation contributions elevate ⁸⁰Kr by only $\sim 2\%$ and by < 1% at the heavier isotopes. 463

464

465 4. Conclusions

466	SAM measurements of martian atmospheric Kr and Xe provide an in-situ benchmark for	
467	the SNC meteorite values. We see enrichments above the SNC isotopic values,	
468	particularly in the lighter isotopes of both Kr and Xe. What remains unclear, in particular	
469	for Xe, are the source(s) of the excesses. Either analytic mass interferences or the	
470	presence of atmospheric spallation and neutron capture components could cause such	
471	effects in Xe. The first of these possibilities seems doubtful since interfering species of	
472	sufficient magnitude appear to be absent in the SAM analytic system. The second is	
473	capable of explaining Xe isotope excesses relative to the fractionated SW composition,	
474	but conflicts with the observation that such components are not recorded in atmospheric	
475	Xe trapped in the shergottite glassy phases.	
476 477	The elevated light isotopes in Kr (Fig. 2) are consistent with neutron capture in regolith	
478	bromine. The SAM measurements lend support to the proposal that Kr (and Xe) from	
479	neutron capture has been produced in the regolith and released into the atmosphere over	
480	time (Rao et al., 2002).	
481 482	Measured δ^{134} Xe and δ^{136} Xe values are subject to neither resolvable spallation	
483	corrections or plausible mass interferences. SAM averages at these isotopes, and at	
484	δ^{130} Xe where a spallation contribution is minor, differ from the corresponding meteorite	
485	averages by <12‰ (Fig. 1). This strongly suggests that the base composition of Mars'	
486	atmospheric Xe follows the SW fractionation curve defined by the meteorite data. An	
487	assumed presence of spallation and $(n,\gamma\beta)$ Xe in the atmosphere can quantitatively	
488	account for elevations above the curve for the remaining nonradiogenic isotopes (Fig. 4).	
489		

490	The new SAM Xe data reinforce an old and enigmatic problem related to martian actinide
491	chemistry and degassing history. Decay products of the extinct radionuclides ¹²⁹ I and
492	²⁴⁴ Pu are both present in Earth's atmosphere (Pepin, 2000), but on Mars only one of
493	these, a large excess of radiogenic ¹²⁹ Xe, is apparent. This mystery has driven modeling
494	attempts to argue that Xe from fission of ²⁴⁴ Pu actually is present in Mars' atmosphere
495	but is fortuitously concealed from observation. Evaluation of such models in the context
496	of the SAM and meteorite Xe data reported here suggests they are only marginally viable
497	and in any case allow at most a minor contribution of Pu-Xe to the atmosphere
498	(Appendix A5). Its near absence likely points to a very specific outgassing history for
499	Mars, one in which ¹²⁹ Xe from short-lived ¹²⁹ I was released in early degassing but fission
500	Xe from longer-lived ²⁴⁴ Pu is still sequestered within the planet.

It appears from the SAM Xe and Kr measurements that plausible arguments can be made for the presence of spallation and neutron capture products in the contemporary martian atmosphere. There are implications in this observation for understanding the breadth of regolith degassing by impact and other thermal pulses, and perhaps for the age of trapped atmosphere components in martian meteorites on the basis of accumulating n-capture and spallogenic contributions to the krypton and xenon inventories.

508

509

510 Acknowledgements

511 Special thanks to Richard Becker for helpful discussion regarding the data analysis. We

are indebted to G. Avice and two anonymous reviewers for comments that greatly

- 513 improved the manuscript. This work was funded by NASA's Mars Science Laboratory
- 514 mission.
- 515
- 516 **References**
- 517 Agee, C.B., Wilson, N.V., McCubbin, F.M., Ziegler, K., Polyak, V.J., Sharp, Z.D.,
- Asmerom, Y., Nunn, M.H., Shaheen, R., Thiemens, M.H., 2013. Unique meteorite from
 early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science 339,
 780-785.
- 521 Atreya, S.K., Trainer, M.G., Franz, H.B., Wong, M.H., Manning, H.L., Malespin, C.A.,
- 522 Mahaffy, P.R., Conrad, P.G., Brunner, A.E., Leshin, L.A., 2013. Primordial argon isotope
- 523 fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity
- and implications for atmospheric loss. Geophysical research letters 40, 5605-5609.
- Becker, R.H., Pepin, R.O., 1984. The case for a Martian origin of the shergottites:
 Nitrogen and noble gases in EETA 79001. Earth and Planetary Science Letters 69, 225242.
- 528 Blake, D.F., Morris, R., Kocurek, G., Morrison, S., Downs, R., Bish, D., Ming, D.,
- Edgett, K., Rubin, D., Goetz, W., 2013. Curiosity at Gale crater, Mars: Characterization
 and analysis of the Rocknest sand shadow. Science 341, 1239505.
- 531 Bogard, D.D., Garrison, D.H., 1998. Relative abundances of argon, krypton, and xenon in
- the Martian atmosphere as measured in Martian meteorites. Geochimica etCosmochimica Acta 62, 1829-1835.
- 555 Cosmoenninea / Yeta 02, 1627-1655.
- Bogard, D.D., Johnson, P., 1983. Martian gases in an Antarctic meteorite? Science 221,
 651-654.
- Cartwright, J., Ott, U., Herrmann, S., Agee, C., 2014. Modern atmospheric signatures in
 4.4 Ga Martian meteorite NWA 7034. Earth and Planetary Science Letters 400, 77-87.
- 538 Clark, B.C., Baird, A., Rose, H.J., Toulmin, P., Keil, K., Castro, A.J., Kelliher, W.C.,
- Rowe, C.D., Evans, P.H., 1976. Inorganic analyses of Martian surface samples at the
 Viking landing sites. Science 194, 1283-1288.
- 541 Dorval, E.L., Arribére, M.A., Guevara, S.R., 2008. Measurement of neutron capture
 542 resonance integrals on bromine isotopes. Nuclear Science and Engineering 159, 199-212.
- 543 Franz, H.B., Trainer, M.G., Wong, M.H., Manning, H.L., Stern, J.C., Mahaffy, P.R.,
- 544 Atreya, S.K., Benna, M., Conrad, P.G., Harpold, D.N., 2014. Analytical techniques for
- retrieval of atmospheric composition with the quadrupole mass spectrometer of the
- 546 Sample Analysis at Mars instrument suite on Mars Science Laboratory. Planetary and
- 547 Space Science 96, 99-113.

- Garrison, D.H., Bogard, D.D., 1998. Isotopic composition of trapped and cosmogenic
 noble gases in several Martian meteorites. Meteoritics & Planetary Science 33, 721-736.
- Gellert, R., Rieder, R., Anderson, R., Brückner, J., Clark, B., Dreibus, G., Economou, T.,
 Klingelhöfer, G., Lugmair, G., Ming, D., 2004. Chemistry of rocks and soils in Gusev
 Crater from the Alpha Particle X-ray Spectrometer. Science 305, 829-832.
- 553 Glavin, D.P., Freissinet, C., Miller, K.E., Eigenbrode, J.L., Brunner, A.E., Buch, A.,
- 554 Sutter, B., Archer, P.D., Atreya, S.K., Brinckerhoff, W.B., 2013. Evidence for
- perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest
- aeolian deposit in Gale Crater. Journal of Geophysical Research: Planets 118, 1955-1973.
- Hohenberg, C., Podosek, F., Shirck, J., Marti, K., Reedy, R., 1978. Comparisons between
 observed and predicted cosmogenic noble gases in lunar samples, 9th Lunar and Planetary
 Science Conference Proceedings, pp. 2311-2344.
- 560 Jakosky, B.M., Jones, J.H., 1997. The history of Martian volatiles. Reviews of 561 Geophysics 35, 1-16.
- Lodders, K., 1998. A survey of shergottite, nakhlite and chassigny meteorites whole rock compositions. Meteoritics & Planetary Science 33, A183-A190.
- 564 Mahaffy, P.R., Webster, C.R., Atreya, S.K., Franz, H., Wong, M., Conrad, P.G., Harpold,
- 565 D., Jones, J.H., Leshin, L.A., Manning, H., 2013. Abundance and isotopic composition of
- 566 gases in the martian atmosphere from the Curiosity rover. Science 341, 263-266.
- 567 Mahaffy, P.R., Webster, C.R., Cabane, M., Conrad, P.G., Coll, P., Atreya, S.K., Arvey,
- 568 R., Barciniak, M., Benna, M., Bleacher, L., 2012. The sample analysis at Mars
- investigation and instrument suite. Space Sci Rev 170, 401-478.
- 570 Marti, K., Eberhardt, P., Geiss, J., 1966. Spallation, fission, and neutron capture
- anomalies in meteoritic krypton and xenon. Zeitschrift für Naturforschung A 21, 398-426.
- 573 Mathew, K.J., Kim, J.S., Marti, K., 1998. Martian atmospheric and indigenous
- 574 components of xenon and nitrogen in SNC meteorites. Meteoritics and Planetary Science575 33, 655-664.
- 576 McLennan, S.M., 2001. Relationships between the trace element composition of
- sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems2.
- 579 Meshik, A., Hohenberg, C., Pravdivtseva, O., Burnett, D., 2014. Heavy noble gases in
- solar wind delivered by Genesis mission. Geochimica et Cosmochimica Acta 127, 326-347.

- 582 Meshik, A., Pravdivtseva, O., Hohenberg, C., Burnett, D., 2015. Refined Composition of
- 583 Solar Wind Xenon Delivered by Genesis: Implication for Primitive Terrestrial Xenon,
- 584 46th Lunar and Planetary Science Conference, Abstract #2640.
- Mohapatra, R.K., Schwenzer, S.P., Herrmann, S., Murty, S., Ott, U., Gilmour, J.D., 2009.
 Noble gases and nitrogen in Martian meteorites Dar al Gani 476, Sayh al Uhaymir 005
 and Lewis Cliff 88516: EFA and extra neon. Geochimica et Cosmochimica Acta 73,
- 588 1505-1522.
- 589 Ollila, A.M., Newsom, H.E., Clark, B., Wiens, R.C., Cousin, A., Blank, J.G., Mangold,
- 590 N., Sautter, V., Maurice, S., Clegg, S.M., 2014. Trace element geochemistry (Li, Ba, Sr,
- and Rb) using Curiosity's ChemCam: Early results for Gale crater from Bradbury
- Landing Site to Rocknest. Journal of Geophysical Research: Planets 119, 255-285.
- 593 Ott, U., 1988. Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny.
 594 Geochimica et Cosmochimica Acta 52, 1937-1948.
- 595 Owen, T., Biemann, K., 1976. Composition of the atmosphere at the surface of Mars:
 596 Detection of argon-36 and preliminary analysis. Science 193, 801-803.
- 597 Owen, T., Biemann, K., Rushneck, D., Biller, J., Howarth, D., LaFleur, A., 1976. The
 598 atmosphere of Mars: detection of krypton and xenon. Science 194, 1293-1295.
- Owen, T., Biemann, K., Rushneck, D., Biller, J., Howarth, D., Lafleur, A., 1977. The
 composition of the atmosphere at the surface of Mars. Journal of Geophysical Research
 82, 4635-4639.
- 602 Payré, V., Fabre, C., Cousin, A., Forni, O., Gasnault, O., Rapin, W., Meslin, P.Y.,
- 603 Sautter, V., Maurice, S., Wiens, R.C., Clegg, S., 2016 Trace elements in Gale Crater: Li,
- 604 Sr, Rb and Ba abundances using ChemCam data, 47th Lunar and Planetary Science
- 605 Conference, Abstract #1348.
- 606 Pepin, R.O., 1985. Evidence of Martian origins. Nature 317, 473-475.
- Pepin, R.O., 1991. On the origin and early evolution of terrestrial planet atmospheres andmeteoritic volatiles. Icarus 92, 2-79.
- Pepin, R.O., 2000. On the isotopic composition of primordial xenon in terrestrial planet
 atmospheres, Space Sci. Rev. 92, 371-395.
- Podosek, F.A., Ozima, M., 2000. The xenon age of the Earth. Origin of the Earth andMoon 1, 63-72.
- 613 Rao, M., Bogard, D., Nyquist, L., McKay, D., Masarik, J., 2002. Neutron capture
- 614 isotopes in the Martian regolith and implications for Martian atmospheric noble gases.
- 615 Icarus 156, 352-372.

- 616 Schwenzer, S., Greenwood, R., Kelley, S., Ott, U., Tindle, A., Haubold, R., Herrmann,
- 617 S., Gibson, J., Anand, M., Hammond, S., 2013. Quantifying noble gas contamination
- 618 during terrestrial alteration in Martian meteorites from Antarctica. Meteoritics &
- 619 Planetary Science 48, 929-954.
- 620 Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic
- basalts: implications for mantle composition and processes. Geological Society, London,Special Publications 42, 313-345.
- 622 Special Publications 42, 313-345.
- Swindle, T.D., Caffee, M.W., Hohenberg, C.M., 1986. Xenon and other noble gases in
 shergottites. Geochimica et Cosmochimica Acta 50, 1001-1015.
- 625 Swindle, T.D, Jones, J.H., 1997. The xenon isotopic composition of the primordial
- Martian atmosphere: contributions from solar and fission components. Journal ofGeophysical Research: Planets 102, 1671-1678.
- Swindle, T.D., 2002. Martian noble gases. Reviews in Mineralogy and Geochemistry 47,171-190.
- Treiman, A.H., 1998. The history of Allan Hills 84001 revised: Multiple shock events.
 Meteoritics & Planetary Science 33, 753-764.
- Treiman, A.H., 2005. The nakhlite meteorites: Augite-rich igneous rocks from Mars.Chemie der Erde-Geochemistry 65, 203-270.
- Treiman, A.H., Dyar, M.D., McCanta, M., Noble, S.K., Pieters, C.M., 2007. Martian
- 635 dunite NWA 2737: Petrographic constraints on geological history, shock events, and
- 636 olivine color. Journal of Geophysical Research: Planets (1991–2012) 112.
- Treiman, A.H., Filiberto, J., 2015. Geochemical diversity of shergottite basalts: Mixing
 and fractionation, and their relation to Mars surface basalts. Meteoritics & Planetary
 Science 50, 632-648.
- 640 White, W.M., Klein, E.M., 2014. Composition of the Oceanic Crust, Treatise of 641 Geochemistry, 2nd ed, pp. 457-496.
- 642 Wiens, R.C., Pepin, R.O., 1988. Laboratory shock emplacement of noble gases, nitrogen,
- and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA
- 644 79001. Geochim. Cosmochim. Acta 52, 295-307.
- Wiens, R.C., Becker, R.H., Pepin, R.O., 1986. The case for a Martian origin of the
 shergottites, II. Trapped and indigenous gas components in EETA 79001 glass. Earth and
- 647 Planetary Science Letters 77, 149-158.
- 648
- 649
- 650
- 651

652 Figure captions

653

654

Figure 1. Martian meteorite, fractionated solar wind, and average SAM Xe data plotted 655 as δ -values referenced to the solar wind (SW) composition, where $\delta^{M}Xe = 1000$ 656 $[({}^{M}Xe/{}^{132}Xe)_{measured}/({}^{M}Xe/{}^{132}Xe)_{SW} - 1]$ %. SW ratios from Meshik et al. (2015). SAM 657 ratios are $1/\sigma_i^2$ -weighted averages of the two expt ID Xe averages in Table 2, where σ_i is 658 the $\pm 1\sigma$ error in each (Sec. 3.1); $1/\sigma^2$ -weighted error bars shown where exceeding symbol 659 sizes. White squares at 124 Xe and 126 Xe are δ -values obtained by unweighted averaging of 660 the two average expt ID ratios (Table 2). Differences between the heavier isotope δ -661 662 values for the two types of averaging are too small to be visible at the scale of the figure. 663 664 665 Figure 2. Martian meteorite and average SAM Kr data plotted as δ -values referenced to the SW composition, where δ^{M} Kr is defined as in Fig. 1 with Kr isotope ratios replacing 666 Xe ratios in the δ equation. SW ratios from Meshik et al. (2014). SAM ratios from the 667

668 unweighted averages of the two Kr averages in Table 3. Error bars for the SAM data 669 reflect $\pm 1\sigma$ standard errors of the means (s.e.m.) of the two data sets, except at ⁸³Kr

where a more conservative error estimate is shown (Sec. 3.2, Table 3). Diamond symbols

at M = 80 and 82 denote subtractions from measured 80,82 Kr/ 84 Kr ratios of isotopes

672 produced by neutron capture in Br; details discussed in Sec. 3.2.

673

674

Figure 3. As in Fig. 1, but here for measured SAM Xe ratios and errors in expt ID #25269 alone. Corrections for hypothetical atmospheric spallation and n-capture ¹²⁷I($n,\gamma\beta^{-}$)¹²⁸Xe and ¹³⁰Ba($n,\gamma\beta^{-}$)¹³¹Xe components (yellow squares) discussed in Sec. 3.3 and listed in Table 4. Upper and lower tips of the asymmetric error bar around δ^{131} Xe denote different corrections calculated for ¹³⁰Ba($n,\gamma\beta^{-}$)¹³¹Xe contributions using, respectively, the Hohenberg et al. (1978) and Rao et al. (2002) n-capture production rates.

682

Figure 4. expt ID #25269 Xe ratios corrected for spallation and $(n,\gamma\beta)$ products (yellow squares) compared with fractionated solar Xe ratios. The expt ID #25269 and meteorite data are referenced here to the fractionated solar composition itself and differences are therefore illustrated at higher resolution than in Fig. 3. Discussion and data in Sec. 3.3.1

- and Table 4. See Fig. 3 caption for discussion of asymmetric error at δ^{131} Xe.
- 688

Table One: Semi-static and Static SAM Experiments on Mars

915

976

Semi-static Enrichment Mass Spectrometry

Experiment ID	Solar Longitude	Šol
25111 (Kr)	358	341
25269 (Kr)	336	976

Static Mass Spectrometry		
25253 (Xe)	301	
25269 (Xe)	336	

Table 2: Xenon^(a)

	124/132	126/132	128/132	129/132	130/132	131/132	134/132	136/132
ID#25253 (Static)	0.00483	0.00368	0.0757	2.5268	0.1542	0.8105	0.3982	0.3486
Standard deviation	0.00240	0.00303	0.0091	0.1042	0.0142	0.0377	0.0256	0.0261
No. of measured ratios N	74	74	74	74	74	74	74	74
s.e.m.	0.00028	0.00035	0.0011	0.0121	0.0017	0.0044	0.0030	0.0030
s.e.m. + bkg uncertainties ^(b)	0.00054	0.00073	0.0031	0.0668	0.0032	0.0089	0.0079	0.0125
δ wrt solar Xe [‰]	-13	-125	-101	1428	-64	-18	77	161
error [‰]	111	174	37	64	20	11	21	42
ID#25269 (Static)	0.00464	0.00418	0.0746	2.5221	0.1537	0.8125	0.4026	0.3451
Standard deviation	0.00230	0.00252	0.0081	0.0888	0.0132	0.0351	0.0247	0.0215
No. of measured ratios N	198	198	198	198	198	198	198	198
s.e.m.	0.00016	0.00018	0.0006	0.0063	0.0009	0.0025	0.0018	0.0015
s.e.m. + bkg uncertainties ^(b)	0.00028	0.00048	0.0008	0.0063	0.0010	0.0030	0.0027	0.0023
δ wrt solar Xe [‰]	-51	-5	-114	1423.9	-67.4	-15.9	88.6	149.3
error [‰]	58	115	10	6.5	6.2	4.0	7.5	7.8
Unweighted Average	0.00473	0.00393	0.07514	2.5245	0.15396	0.8115	0.4004	0.3468
s.e.m.	0.00009	0.00025	0.00055	0.0024	0.00026	0.0010	0.0022	0.0017
δ wrt solar Xe [‰]	-32	-65	-108	1426.2	-65.8	-17.1	82.7	155.0
s.e.m. [‰]	23	62	7	3.3	2.3	1.9	6.2	6.0
$1/\sigma^2$ -weighted Average	0.00468	0.00403	0.07466	2.5221	0.15374	0.8123	0.4021	0.3452
error	0.00025	0.00040	0.00077	0.0063	0.00094	0.0029	0.0026	0.0022
δ wrt solar Xe [‰]	-43	-41	-113	1424.0	-67.1	-16.2	87.4	149.7
error [‰]	52	97	9	6.5	5.9	3.8	7.1	7.7
EETA 79001, Lith. C [1]	0.00378	0.00327	0.0735	2.394	0.1543	0.7930	0.4008	0.3514
error	0.00022	0.00022	0.0011	0.029	0.0010	0.0077	0.0039	0.0036
EETA 79001, Zagami [2]	0.00353	0.00322	0.0724	2.384	0.1532	0.7934	0.3959	0.3475
error	0.00040	≡ 0	0.0022	0.020	0.0010	0.0073	0.0042	0.0033
Genesis solar Xe [3]	0.00489	0.00420	0.08420	1.0405	0.16480	0.8256	0.36979	0.30030
error	0.00006	0.00007	0.00020	0.0010	0.00030	0.0012	0.00059	0.00049
			0.0640	0.0064		0.0640		4 4 5 5 0
Solar fractionation factor [4]	0.7470	0.8035	0.8643	0.8964	0.9297	0.9642	1.0757	1.1570
error ^(C)	0.0050	0.0040	0.0029	0.0022	0.0015	0.0008	0.0018	0.0038
Fractionated solar Xe	0.00365	0.00338	0.0728	0.9327	0.1532	0.7960	0.3978	0.3475
error	0.00005	0.00006	0.0003	0.0025	0.0004	0.0013	0.0009	0.0013
Fract. solar wrt solar [‰]	-253	-196	-135.7	-103.6	-70.3	-35.8	75.7	157.0
error [‰]	14	19	4.1	2.5	2.8	2.1	3.0	4.7

(a) ¹³⁰Xe/¹³²Xe ratios corrected for interference by ¹²⁹XeH hydride (Appendix A2). All ratio data in App. A7.
(b) Total error, including uncertainties in background (bkg) corrections. Error augmentations based on differences in isotope ratios yielded by the selected and alternate background subtraction models (Sec. 2.2).
(c) Estimated variance in fit to meteorite data.

Table 2 References: [1] Swindle et al., 1986 [2] Mathew et al., 1998 [3] Meshik et al., 2015 [4] Appendix A6

Table 3: Krypton

	80/84	82/84	83/84	86/84
ID#25111 (Semi-static)	0.0666	0.2209	0.2021	0.3129
Standard deviation	0.0316	0.0598	0.0521	0.0651
No. of measured ratios N	247	247	247	247
s.e.m.	0.0020	0.0038	0.0033	0.0041
s.e.m. + bkg uncertainties ^(a)	0.0021	0.0041	0.0033	0.0042
δ wrt solar Kr [‰]	617	75	-6	39
error [‰]	52	20	16	14
ID#25269 (Semi-static)	0.0779	0.2116	0.2025	0.2989
Standard deviation	0.0418	0.0657	0.0658	0.0810
No. of measured ratios N	432	432	432	432
s.e.m.	0.0020	0.0032	0.0032	0.0039
s.e.m. + bkg uncertainties ^(a)	0.0053	0.0080	0.0041	0.0057
δ wrt solar Kr [‰]	891	30	-4	-8
error [‰]	129	39	20	19
Unweighted Average	0.0723	0.2163	0.2023	0.3059
s.e.m.	0.0056	0.0047	0.0002	0.0070
δ wrt solar Kr [‰]	754	53	-5.4	16
s.e.m. [‰]	137	23	1.4 ^(b)	23
$1/\sigma^2$ -weighted Average	0.0681	0.2190	0.2023	0.3075
error	0.0020	0.0036	0.0026	0.0033
δ wrt solar Kr [‰]	654	66	-6	21
error [‰]	48	18	13	11
EETA 79001, Lith. C [1]	0.0432	0.2063	0.2029	0.3009
error	0.0007	0.0017	0.0015	0.0023
EETA 79001, Lith. C [2]	0.0440	0.2065	0.2044	0.2993
error	0.0015	0.0028	0.0038	0.0039
Genesis solar Kr [3]	0.0412	0.2054	0.2034	0.3012
error	0.0002	0.0002	0.0002	0.0004

(a) Total error, including uncertainties in background (bkg) corrections. Error augmentations based on differences in isotope ratios yielded by the selected and alternate background subtraction models (Sec. 2.2). Standard deviation and s.e.m. = standard deviation/ \sqrt{N} calculated using all individual ratios measured throughout the analysis region (Appendix A7).

(b) Small error likely fortuitous. Average expt. ID measurement error of $\sim \pm 18\%$ adopted for Fig. 2.

Table 3 References: [1] Swindle et al., 1986 [2] Becker & Pepin, 1984 [3] Meshik et al., 2014

Table 4: ID#25269 Xenon Corrected for Spallation and (n,γβ⁻) Products

	124/132	126/132	128/132	129/132	130/132	131/132	134/132	136/132
Measured (Table 3)	0.00464	0.00418	0.07459	2.5221	0.15369	0.8125	0.4026	0.3451
Total error ^(a)	0.00028	0.00048	0.00080	0.0063	0.00098	0.0031	0.0027	0.0023
δ wrt solar Xe [‰]	-51	-5	-114	1423.9	-67.4	-15.9	88.6	149.3
error [‰]	58	115	10	6.5	6.2	4.0	7.5	7.8
Spallation composition ^(b)	0.609	≡1	1.509	1.765	0.662	3.19	0.031	0
error	0.007		0.023	0.043	0.014	0.15	0.001	
Measured minus spallation	0.00395	0.00310	0.07277	2.5221	0.15293	0.8090	0.4026	0.3451
Δ wrt measured Xe	-0.00069	-0.00108	-0.00183	0	-0.00076	-0.0035	0	0
Δ measured Xe [‰]	-149	-258	-24.4	0	-4.9	-4.3	0	0
Measured minus (n,γβ ⁻) ^(c)	0.00464	0.00418	0.07451	2.5221	0.15369	0.7916	0.4026	0.3451
Δ wrt measured Xe	0	0	-0.00008	0	0	-0.0209	0	0
Δ range wrt measured Xe			~0 00081			-0.0163 -0.0753		
Δ measured Xe [‰]	0	0	-1.1	0	0	-26	0	0
Δ range/measured Xe [‰]			0/-10.9			+20/-93		
Corrected ID#25269	0.00395	0.00310	0.07269	2.5221	0.15293	0.7882	0.4026	0.3451
± uncertainty	0.00028	0.00048	+.00080	0.0063	0.00098	+0.0166	0.0027	0.0023
δ wrt solar Ye [%]	-192	-262	-136.7	1424 0	-72.0	-0.0734	88.6	149 3
+ uncertainty [%]	58	115	+9.8	65	62	+20.2	7.5	7.8
	50	115	-13.0	0.5	0.2	-91.3	7.5	7.0
δ wrt fract. solar Xe [‰]	81	-81	-1.1	1704	-1.8	-9.9	12.0	-6.7
uncertainty [‰]	78	143	+11.8	10	6.9	+20.9	7.2	7.5
			-15.4			-94.7		
Fract. solar wrt solar [‰]	-253	-196	-135.7	-103.6	-70.3	-35.8	75.7	157.0
uncertainty [‰]	14	19	4.1	2.5	2.8	2.1	3.0	4.7

(a) See Table 2, footnote (b). (b) Spallation 132 Xe/ 126 Xe = 0.504 ± 0.013. Degassed spallogenic contributions to atmospheric 132 Xe and 129 Xe inventories are negligible, 0.5‰ and 0.7‰ respectively. Neither of these is included in spallation

corrections to measured ${}^{M}Xe/{}^{132}Xe$ ratios. (c) For ${}^{127}I(n,\gamma\beta^{-}){}^{128}Xe$, ${}^{127}I = 100ppb \pm a$ factor 10. For ${}^{130}Ba(n,\gamma\beta^{-}){}^{131}Xe$ and Ba = 602ppm, adopted ${}^{131}Xe$ production rate (PR) = log average of the Hohenberg et al. (1978) and Rao et al. (2002) PRs. Upper and lower Δ ranges calculated for each of these PRs separately.

Appendix A. Supplementary material

- 2 **1. Mass discrimination calculations.**
- 3 1.1 Xenon.

Measured abundance of each isotope was referenced to that of ¹³²Xe. Comparison of isotope
ratio data obtained in a static QMS calibration investigation to the actual calibration gas ratios
indicated instrumental transmission bias favoring lighter isotopes, as shown in Fig. A1.1a. The
linearity of this relationship leads to a simple function to correct for mass discrimination:

$$8 mF = am + b (1)$$

9 where ^mF is the correction factor for the ratio of Xe isotope of mass m relative to 132 Xe

10 (i.e.,^mXe/¹³²Xe). To obtain a value and error of intercept b appropriate for Xe discrimination

11 corrections, mass m = 124 was repositioned to m = 0 for intercept calculation. Corresponding

12 coefficients of the linear fit are then $a = -0.0087 \pm 0.0010$ and $b = 1.0577 \pm 0.0073$. However this

13 fit to the QMS data returns a value for 132 F < 1, so relative to the base 132 Xe isotope,

14 discriminations are given by ${}^{m}F/{}^{132}F$, with m = 0 for 124, 2 for 126, 4 for 128, and similarly for

15 the remaining isotopes in Eq. (1). The correction factor was then applied using

16

$${}^{m}R_{c} = {}^{m}R/({}^{m}F/{}^{132}F)$$
(2)

where ^mR is the isotope ratio as measured (incorporating corrections for dead time, background, and peak shapes) and ^mR_c is the isotope ratio corrected for mass discrimination, including errors introduced by uncertainties in a and b.

20

21 1.2 Krypton.

22 The same method, with m = 80 repositioned to 0 for intercept calculation, was used to derive

analogous mass discrimination corrections for Kr isotope ratios referenced to ⁸⁴Kr (Fig. A1.1b).
- Corrections have the form of Eq. (1), with coefficients $a = -0.0173 \pm 0.0024$ and $b = 1.0640 \pm 0.0085$. They were applied, with m = 0 for 80, 2 for 82, and so on for the remaining isotopes in Eq. (1), to the measured ${}^{m}Kr/{}^{84}Kr$ ratios by ${}^{m}R_{c} = {}^{m}R/({}^{m}F/{}^{84}F)$, the Kr equivalent of Eq. (2), including errors introduced by uncertainties in a and b.
- 28
- 29
- 30

Figure A1.1. Derivation of mass discrimination correction functions from QMS calibration data 32 for (a) Xe and (b) Kr. Triangles show ratios and errors of measured ${}^{m}Xe/{}^{132}Xe$ and ${}^{m}Kr/{}^{84}Kr$ 33 relative to corresponding isotope ratios in the calibration gas represented by horizontal lines at y 34 35 = 1. Least-square linear fits to the triangular data points return the values and uncertainties of 36 slopes and intercepts used to calculate discrimination factors (Secs. A1.1, A1.2), shown here by 37 circles. Calibration data for Xe (a) are more precise than those for Kr (b). Xe measurement errors 38 are plotted where they exceed the triangular symbol sizes. Larger errors reflect effects of nonstatistical stochastic interferences by instrumental background contaminants, particularly at ¹²⁹Xe 39 and ¹³¹Xe. Measured value for ¹²⁸Xe is clearly anomalous and was not included in the least-40 41 squares fit to the data.

- 42
- 43 1.3 Mass spectra
- 44 The mass spectra of both krypton and xenon as taken from the SAM experiment ID#25269 are
- 45 shown in fig. A1.2. The Kr isotopes were obtained with semi-static mass spectrometry and are

46 shown in panel A. The Xe spectrum, panel B, was acquired with the static mass spectrometry

47 portion of the experiment as explained in Sec. 2.1.

Figure A1.2. The mass spectra of (A) krypton and (B) xenon from experiment ID#25269. Kr spectrum acquired in semi-static mode and Xe in static mode. Neither are background corrected.

49

50 2. Xe hydride interferences:

- 51 Low-abundance ¹³⁰Xe, one mass unit above the large radiogenic ¹²⁹Xe abundance, is uniquely
- 52 positioned in the Xe mass spectrum for potential interference from the ¹²⁹XeH hydride.
- 53 Hydrogen abundances in background assays before and after the static Xe analyses are high.

54	Repeated measurements of background-corrected ¹³³ Xe/ ¹³² Xe during the ID#25269 Xe analysis
55	yield an average of 0.00175 ± 0.00028 . This value provides a measure of the 132 XeH/ 132 Xe
56	hydride, and therefore of the general hydride ratio ^M XeH/ ^M Xe. Application of this ratio to the
57	129 Xe- 130 Xe pair in the $1/\sigma^2$ -weighted average of expt IDs #25253 and #25269, and to the more
58	precisely measured ID #25269 alone, resulted in \sim 30‰ downward corrections of measured
59	δ^{130} Xe upon removal of the interferences, to within < 4‰ of the SW fractionation curve (Table
60	2. Fig. 1). Hydride contributions to all other Xe isotopic abundances are either absent or
61	negligible.

63 **3. Possible hydrocarbon interferences:**

64 3.1 Xenon

65 It is difficult to argue that MTBSTFA (Sec 3.1) is the source of the significant departure of m124 66 and m126 from the trend of fractionated solar wind. There are no fragments from MTBSTFA 67 composition at m124. One might argue that MTBSTFA decomposition fragments could affect all 68 of the other Xe isotopes, however we have calculated those effects, and even in the case of 69 m126, they are very small. We determined a total background for each mass based on the values 70 calculated for the background at the start of the static portion (before the Xe was admitted to the 71 QMS) plus contributions due to MTBSTFA decomposition fragment products as measured by 72 contributions of those fragments above their own background values in the static region. One 73 such fragment is present at m127, used for trending background corrections, and others are 74 present at m133, m135 & m147. The effects of the background subtraction of the MTBSTFA 75 fragment masses are:

 \bullet At m124 – no effect because there is no MTBSTFA product at that mass.

♦ For other isotopes – generally the same as the trending background based on m127only.

We conclude that MTBSTFA is not a supportable explanation for the enrichment of 124 Xe and 126 Xe.

80 3.2 Krypton

- 81 One could argue that the large $(754 \pm 137 \text{ }\%)$ excess of the trace isotope ⁸⁰Kr relative to SW-Kr
- 82 could reflect a mass interference from either hydrocarbons and/or sulfur species at mass 80.

However, ⁸²Kr, for which there is no plausible interfering species, is also significantly enriched
(Fig. 2).

85

86 4. Isotope ratio data over time

Example plots of individual Kr and Xe ratio measurements vs. time are shown for each of the experiments. These were selected to visually display data scatter for both low and high abundance isotope measurements (124 Xe/ 132 Xe, 131 Xe/ 132 Xe and 129 Xe/ 132 Xe, 80 Kr/ 84 Kr and 86 Kr/ 84 Kr). Each is labeled by the ratio vs. time display segment used to calculate the mean ratio and its statistical uncertainties. For the Kr data from experiment ID # 25111, "scrub" refers to each successive CO₂ and H₂O scrubber pass.

95

96

- 98
- 99

The SAM instrument measures backgrounds before ingesting the atmospheric samples and again after the QMS is evacuated, so we know that there are no memory effects that would affect the isotope ratios of subsequent experiments. Each experiment has telemetry markers that allow us to recognize valve positions, pressure and other instrument health data over time.

121

122 5. Atmospheric fission Xe on Mars?

Attempts to reveal a possible presence of atmospheric fission Xe assume a smaller degree of SW fractionation than that shown in Figs. 1 and 3. The resulting offsets of measured heavy isotope ratios from the revised fractionation curve can accommodate a component roughly resembling ²⁴⁴Pu-Xe (Swindle and Jones, 1997; Mathew et al., 1998). Combined SAM and meteorite ratio data can be used to constrain this model of extant but fortuitously invisible fission Xe with 128 relatively high precision. Unweighted averages of spallation-corrected ID#25269 data and the 129 EETA79001 (Swindle et al., 1986) and EETA79001+Zagami (Mathew et al., 1998) Xe compositions (Tables 2 and 4), all renormalized to ¹³⁰Xe which has no fission Xe contribution, 130 have $\pm 1\sigma$ standard deviations of $\leq 9\%$ for the 128,131,136 Xe/ 130 Xe isotope ratios. Fig. A5.1 displays 131 132 the fit of these averaged measured ratios to the SW fractionation curve A, taken from Fig. 1, which closely matches the meteorite and corrected SAM atmospheric data (Sec. 3.1, Fig. 4). Fig. A5.1 133 134 also shows a smaller fractionation B of solar Xe which, if applicable to Mars, would represent the 135 composition of the atmosphere at the conclusion of the fractionating loss episode. The hypothesis 136 that a fission Xe component is extant in the present atmosphere posits that the gaps between these two compositions at ¹³¹⁻¹³⁶Xe were filled by degassing of ²⁴⁴Pu-Xe after atmospheric Xe loss had 137 138 terminated.

139

There are two constraints on such models: [1] the derived fission Xe composition must match Pu-Xe, and [2] measured light isotope ratios ¹²⁴⁻¹²⁸Xe/¹³⁰Xe cannot be perturbed beyond their error limits by the modeling assumptions. The latter constraint reflects the absence of fission contributions to the shielded isotopes ¹²⁴Xe, ¹²⁶Xe, ¹²⁸Xe and ¹³⁰Xe, so a successful model of fission Xe addition does not generate significant offsets from measured ratios at these isotopes.

145

Fig. A5.2 illustrates the ‰ differences between the averaged measured ratios and fractionation A. The close correspondence of measured ratios with A is evident. Nominal deviations are $\leq 8\%$ for 131 Xe and $\leq 4\%$ for all other isotopes (except radiogenic 129 Xe) heavier than 126 Xe, within $\pm 1\sigma$ errors of zero except for ~1.7 σ departures at 126 Xe and 131 Xe. This agreement suggests that fractionation A of fission-free solar Xe by itself accurately represents the composition of Mars' atmosphere. There is no apparent evidence for a fission Xe component in the system. It would be
allowed only if addition of Pu-Xe to less fractionated solar Xe (e.g., fractionation B in Fig. 5A.1)
yields ¹³¹⁻¹³⁶Xe/¹³⁰Xe ratios consistent with their measured values.

154

155 There are two ways to assess whether a smaller solar Xe fractionation can accommodate the 156 presence of a fission Xe component with Pu-Xe composition. One could first take the fractionation 157 A fit to the data as accurate measures of atmospheric heavy isotope ratios. In this case the offsets 158 plotted in Fig. A5.2 between fractionation A in Fig. A5.1 and the less fractionated solar Xe shown 159 by the dotted curve B — chosen to marginally satisfy constraint [2] as discussed below— are not in accord with added Pu-Xe at the heavy isotopes. When translated to ^MXe/¹³⁶Xe ratios these 160 offsets yield ${}^{131}Xe/{}^{136}Xe = 0.385$, ${}^{132}Xe/{}^{136}Xe = 0.965$, and ${}^{134}Xe/{}^{136}Xe = 0.765$ for the fission 161 composition, values that diverge substantially, particularly at 134 Xe/ 136 Xe, from 244 Pu fission yields 162 163 of 0.248 ± 0.015 , 0.893 ± 0.013 , and 0.930 ± 0.005 respectively (Hudson et al., 1989). Differences 164 are not reduced by adjusting the fractionation A fit to the extent allowed by errors in measured 165 ratios (Fig. A5.2) nor by assuming smaller degrees of solar Xe fractionation in B which increase 166 its divergences from A. It appears that Xe ratios in the added component calculated in this way fail to satisfy constraint [1]; they are incompatible with ²⁴⁴Pu fission, and also with spontaneous and 167 neutron-induced fission of ^{238,235}U. 168

170 Constraint [2] on light isotope perturbations effectively controls the model. With present data the 171 scatter and errors of the ¹²⁴⁻¹²⁶Xe/¹³⁰Xe measurements are too large to be useful. However average 172 measured δ^{128} Xe/¹³⁰Xe with respect to SW-Xe falls squarely on the fractionation A curve (Fig. 173 A5.2) and is sufficiently precise —±1 σ standard deviation of 4.6‰, including error contributed by

174 normalization to SW-Xe— to severely restrict the possible range of fractionation B relative to A. 175 The dotted curve in Figs. A5.1,2 was selected to pass through the $+1\sigma$ uncertainty in measured 128 Xe/ 130 Xe (Fig. A5.2). In this limiting case one can explore in a different way the effects of a 176 177 fission component added to B. The discussion above demonstrates that A minus B calculations yield results incompatible with ²⁴⁴Pu-Xe. However, by hypothesis, the residual Xe composition in 178 179 the atmosphere following the loss episode is now not represented by fractionation A, but by B 180 instead. This suggests an alternate approach in which the fission Xe composition is assumed to satisfy constraint [1], i.e., to be ²⁴⁴Pu-Xe, and effects of its addition to B are compared, not to A, 181 182 but to the actual measured heavy-isotope ratios.

183

184 Results are shown by the filled black circles in Fig. A5.2. Addition to B of sufficient Pu-Xe to 185 replicate the measured 136 Xe/ 130 Xe ratio also generates ${}^{131-134}$ Xe/ 130 Xe ratios that fall close to or 186 within the 1 σ error bars of measured values, and very close to A. In other words the combination 187 of fractionation B plus Pu-Xe precisely mimics the measured isotopic distributions —except for 188 128 Xe/ 130 Xe— that underlie the fractionation A fit to the data. In this limit of measured 128 Xe/ 130 Xe 189 there could indeed be a hidden Pu fission component in Mars' atmosphere.

190

However the amount of this fission Xe is very small. Comparisons with extinct radionuclide products in Earth's atmosphere are informative. There the abundance of 136 Xe from 244 Pu, in units of mol/g-Earth, is 1.1 x 10⁻¹⁷ (Pepin, 1991, 2000). The hidden fission 136 Xe abundance derived above for Mars' atmosphere is only 6.2 x 10⁻²⁰ mol/g-Mars, so to the extent that initial g-Pu/gplanet inventories and closure times for gas loss to space were similar for Earth and Mars, only 0.6% of the available Pu- 136 Xe on Mars is in the atmosphere. Initial U-Pu concentrations in models 197 of Mars' bulk composition differ from Earth values by less than a factor 2 (Lodders and Fegley, 1997), so 0.6% should be valid to within this factor. If the adopted $\pm 1\sigma$ error limit in measured 198 128 Xe/ 130 Xe were expanded to $\pm 2\sigma$, the corresponding fractionation B curve through $+2\sigma$ in Fig. 199 200 A5.2 would vield twice the 0.6% ratio, larger but still minor. Effects of differences in gas-loss 201 closure times between the two planets can be estimated from the Pu-Xe closure age equation (Pepin 202 and Porcelli, 2006) modified to allow variable degassing fractions from the martain silicate mantle, 203 and Pepin and Porcelli's calculated Earth closure at ~96Ma. When assumed closure times for Mars 204 are varied from twice to \leq half of Earth's closure age, the corresponding fractions of total mantle Pu-¹³⁶Xe inventories currently residing in the atmosphere range from ~0.7% to < ~0.2%. These 205 206 observations suggest that the two planets experienced radically different outgassing histories, on Mars facilitating early release of ¹²⁹Xe from decay of short-lived ¹²⁹I but efficiently throttling later 207 degassing of interior Xe from fission of ~5x longer-lived ²⁴⁴Pu, a possibility previously noted by 208 209 Mathew et al. (1998).

210

211 The atmospheric fission Xe contributions derived from this modeling are upper limits since by constraint [2] their existence depends on assuming a 128 Xe/ 130 Xe ratio at the 1 σ or 2 σ upper bounds 212 213 of its measured value. They would be restricted still further if the 2.3‰ s.e.m. of the three ¹²⁸Xe/¹³⁰Xe measurements were adopted instead of the larger standard deviation of an individual 214 measurement. One could argue, from the fact that the nominal 128 Xe/ 130 Xe ratio in Fig. A5.2 differs 215 216 from the fractionation A curve by only 0.2‰, that an atmospheric fission component is most likely 217 either absent or undetectably negligible. However it hardly matters whether this or an upper-limit 218 view is taken. By whatever measure, Pu-Xe appears to be, at most, a minor constituent of the atmosphere, and the near absence of the abundance expected for correlated degassing of ¹²⁹I and 219

²⁴⁴Pu decay products remains to be fully explained. And, even in the scenario evaluated above,
>98% to 100% of nonradiogenic atmospheric Xe still derives from a mass fractionation of solar
Xe close to fractionation A.

223

224

Fig. A5.1. Unweighted averages (yellow squares) of spallation-corrected ratios in ID#25269 (Table 4) and the shergottite glasses (Table 2), plotted as δ -values with respect to SW-Xe. All ratio data normalized to ¹³⁰Xe. Fractionation A is the re-normalized SW fractionation curve shown in Fig. 1, generated for $f_{124/130} = 0.8035$ (see Appendix 6). The dotted fractionation B curve ($f_{124/130} =$ 0.8150) represents a less severe fractionating loss of solar Xe. The ^MXe/¹³⁰Xe ratios in the atmosphere that would pertain at the end of this atmospheric escape episode fall along the dotted curve.

- 233
- 234
- 235

Fig. A5.2. Differences Δ^{M} Xe in ∞ between average measured δ^{-M} Xe/¹³⁰Xe ratios and fractionation A in Fig. A5.1 (yellow squares with $\pm 1\sigma$ error bars), and between the composition predicted by fractionation B relative to A for B constrained to pass through measured ¹²⁸Xe/¹³⁰Xe plus 1σ (dotted curve). Filled black circles show compositions obtained by adding ²⁴⁴Pu-derived fission Xe to fractionation B.

244 Added references for Appendix A5

245

249

Hudson, G. B., Kennedy, B. M., Podosek, F. A., Hohenberg, C. M. 1989. The early solar system
abundance of ²⁴⁴Pu as inferred from the St. Severin chondrite. Proc. 19th Lunar Planet. Sci. Conf.,
547-557.

Lodders, K., Fegley, B. Jr. 1997. An oxygen isotope model for the composition of Mars. Icarus 126, 373-394.

- Pepin, R. O., Porcelli, D. 2006. Xenon isotope systematics, giant impacts, and mantle degassing
 on the early Earth. Earth Planet. Sci. Lett. 250, 470-485.
- 255

256 **6. Isotopic fractionation factors for fractionated solar wind**

257 These are derived from the expression describing depletions in atmospheric inventories during 258 hydrodynamic escape under conditions of constant hydrogen inventory (Eq. (12) in Pepin 1991). Eq. 12 yields solutions for the escape depletion factors $f_M = N_M/(N_M)_0$, where N_M is the 259 260 atmospheric inventory of species M and its initial value is indicated by subscript 0. For Xe isotopes M, dividing Eq. 12 by the depletion factor for escaping ${}^{130}Xe = f_{130} = N_{130}/(N_{130})_0$ gives 261 262 $[N_{M}/(N_{M})_{0}]/[N_{130}/(N_{130})_{0}] = (N_{M}/N_{130})/(N_{M}/N_{130})_{0} = f_{M/130}$, the Xe isotopic fractionation factors. 263 Calculated $f_{M/130}$ factors are logarithmic in M (denoted in Eq. 12 by m₂) where $f_{136/130} = 1/f_{124/130}$. 264 They are independent of values for all other input variables in Eq. 12 and are also insensitive to 265 the choice of hydrodynamic loss model, either at constant inventory as described by Eq. 12 or by 266 Rayleigh distillation (Eq. (16) in Pepin 1991). The latter can replicate $f_{M/130}$ values derived from 267 the constant inventory model to within $\leq 2\%$.

268

Their logarithmic dependence allows fractionation factors $f_{M/130}$ for any chosen value of $f_{124/130}$ to 269 270 be readily calculated from a 2-point logarithmic fit to $(124, f_{124/130})$ and $(136, 1/f_{124/130})$, which returns an equation of the form $f_{M/130} = Ae^{B^*M}$ where values of both A and B depend on the selected 271 $f_{124/130}$. An example curve of $f_{M/130}$ vs. M for an extreme fractionation of $f_{124/130} = 0.100$ is 272 illustrated below. Symmetry dictates the choice of $M = {}^{130}Xe$ normalization, but $f_{M/130}$ fractionation 273 274 factors are easily converted to $f_{M/132}$ by dividing $f_{M/130}$ by $f_{132/130}$. The SW fractionation curve in 275 Figs. 1 and 3 was generated for $f_{124/130} = 0.8035$ (with an estimate variance in fit to the data of ± 276 0.0040), corresponding to $f_{124/132} = 0.7470 \pm 0.0050$. All $f_{M/132}$ values and their uncertainties are listed in Table 2. For fractionation B in Figs. A5.1,2 (Appendix A5), $f_{124/130}$ is 0.8150. 277

Fig. A6. Fractionation factors $f_{M/130}$ vs. isotope mass M for the extreme fractionation resulting from selection of $f_{124/130} = 0.1$ and $f_{136/130} = 1/f_{124/130} = 10$. Returned equation for $f_{M/130}$ displayed in the figure box.

7. Data files

295

In the table that follows all of the data are shown corrected for mass discrimination, peak shape and deadtime. The ratios for Xe are to 132 Xe and for Kr to 84 Kr, and all ratio data are rounded to four decimal places.

300	Experime	nt ID#2526	9 Xenon I	sotopic Rati	o Data

Time	¹²⁴ Xe/ ¹³² Xe	¹²⁶ Xe/ ¹³² Xe	¹²⁸ Xe/ ¹³² Xe	¹²⁹ Xe/ ¹³² Xe	¹³⁰ Xe/ ¹³² Xe	¹³¹ Xe/ ¹³² Xe	¹³⁴ Xe/ ¹³² Xe	¹³⁶ Xe/ ¹³² Xe
16601.84	0.0021	0.0057	0.0749	2.3733	0.1430	0.7876	0.3590	0.3028
16605.26	0.0033	0.0017	0.0778	2.6405	0.1777	0.8570	0.4150	0.3511
16608.68	0.0032	0.0113	0.0804	2.4048	0.1474	0.8301	0.4547	0.3162
16612.10	0.0017	0.0026	0.0816	2.5041	0.1619	0.8176	0.4050	0.3269
16615.52	0.0054	0.0076	0.0820	2.4020	0.1391	0.7368	0.3840	0.3718
16618.94	0.0056	0.0007	0.0669	2.5047	0.1404	0.7747	0.4407	0.3408
16622.36	0.0055	0.0087	0.0771	2.4088	0.1517	0.7908	0.4008	0.3442
16625.78	0.0066	0.0064	0.0737	2.5905	0.1625	0.8254	0.3680	0.3612
16629.20	-0.0012	0.0096	0.0916	2.5246	0.1773	0.8309	0.4351	0.3787
16632.62	0.0048	0.0034	0.0768	2.3885	0.1515	0.7670	0.3514	0.3415
16636.04	0.0003	0.0011	0.0826	2.4063	0.1294	0.8443	0.3551	0.3487
16639.46	0.0045	0.0077	0.0859	2.5798	0.1434	0.8432	0.4001	0.3650
16642.88	0.0073	0.0030	0.0703	2.4900	0.1550	0.8185	0.4028	0.3562
16646.30	0.0046	0.0083	0.0625	2.4670	0.1586	0.8510	0.3798	0.3952
16649.72	0.0025	0.0006	0.0693	2.4750	0.1452	0.8069	0.4108	0.2861
16653.14	0.0029	0.0011	0.0781	2.3717	0.1424	0.8227	0.3709	0.3065
16656.56	0.0035	0.0020	0.0782	2.5790	0.1728	0.8232	0.4103	0.3329
16659.98	0.0020	0.0020	0.0701	2.4798	0.1423	0.8282	0.3879	0.3138
16663.40	0.0040	0.0070	0.0649	2.5077	0.1607	0.8096	0.3822	0.3574
16666.82	0.0003	0.0047	0.0656	2.5063	0.1654	0.7866	0.4122	0.3230
16670.24	0.0052	0.0020	0.0675	2.4401	0.1626	0.7945	0.3994	0.3419
16673.66	0.0099	0.0054	0.0673	2.4920	0.1285	0.7922	0.3672	0.3076
16677.08	0.0050	0.0032	0.0683	2.3784	0.1702	0.7898	0.4021	0.3464
16680.50	0.0015	0.0044	0.0675	2.3508	0.1310	0.8121	0.3799	0.3293
16683.92	0.0012	0.0016	0.0666	2.6759	0.1752	0.8810	0.4326	0.3568
16687.34	0.0066	0.0006	0.0581	2.5376	0.1435	0.8125	0.3620	0.3551
16690.76	0.0020	0.0052	0.0708	2.4039	0.1469	0.8204	0.3983	0.3382
16694.18	0.0040	0.0025	0.0775	2.6532	0.1810	0.8492	0.4356	0.3071
16697.60	0.0070	0.0026	0.0879	2.6303	0.1652	0.8584	0.4208	0.3576
16701.02	0.0065	0.0055	0.0724	2.5002	0.1654	0.8069	0.3847	0.3397
16704.44	0.0038	0.0023	0.0740	2.4246	0.1519	0.7754	0.4272	0.3167
16707.86	0.0068	0.0034	0.0718	2.6785	0.1544	0.8535	0.4804	0.3854
16711.28	0.0058	0.0056	0.0690	2.5959	0.1601	0.8454	0.4360	0.4012
16714.70	0.0030	0.0028	0.0732	2.5200	0.1626	0.8272	0.4215	0.3577
16718.12	0.0011	0.0057	0.0656	2.3992	0.1642	0.8622	0.3722	0.3511
16721.54	0.0037	0.0049	0.0746	2.5770	0.1602	0.8292	0.3970	0.3648
16724.96	0.0036	0.0060	0.0759	2.4412	0.1420	0.8185	0.3850	0.3245
16728.38	0.0038	0.0037	0.0773	2.6655	0.1530	0.8883	0.4130	0.3677
16731.80	0.0036	0.0102	0.0702	2.6082	0.1340	0.8094	0.4189	0.3448
16735.22	0.0088	0.0019	0.0707	2.5379	0.1708	0.9304	0.4034	0.3674
16738.64	0.0021	0.0042	0.0654	2.5874	0.1611	0.8798	0.4412	0.3667
16742.06	0.0011	0.0065	0.0928	2.4160	0.1691	0.8091	0.3947	0.2933
16745.48	0.0043	0.0020	0.0774	2.5899	0.1708	0.8960	0.4477	0.3709
16748.90	0.0037	0.0040	0.0672	2.5438	0.1667	0.7829	0.4316	0.3614
16752.32	0.0028	0.0056	0.0758	2.5027	0.1717	0.8009	0.3839	0.3969

16755 74	0.0060	0.0095	0.0852	2 4628	0 1325	0.8211	0 3824	0 3367
16759 16	0.0100	0.0059	0.0952	2.4020	0.1020	0.8158	0.4126	0.3737
16762.58	0.0090	0.0051	0.0602	2.0402	0.1702	0.7639	0.3884	0.3286
16766.00	0.0050	0.0030	0.0002	2.4003	0.1533	0.7388	0.3073	0.3610
16760.00	0.0000	0.0030	0.0668	2.4507	0.1563	0.7500	0.3553	0.3010
16772.84	0.0035	0.0030	0.0000	2.4007	0.1566	0.8286	0.000	0.3373
16776.26	0.0043	0.0073	0.0003	2.3074	0.1546	0.0200	0.4402	0.3270
16770.20	0.0003	0.0002	0.0022	2.4302	0.1540	0.7097	0.3902	0.3306
16783 10	0.0001	0.0140	0.0023	2.3170	0.1070	0.7734	0.3344	0.3330
16786 52	0.0030	0.0013	0.0505	2.5750	0.1332	0.7043	0.3300	0.3140
16780.04	0.0010	0.0054	0.0000	2.0001	0.1737	0.0019	0.3000	0.3403
10709.94	0.0074	0.0004	0.0099	2.0231	0.1040	0.0101	0.4252	0.3353
10793.30	0.0052	0.0040	0.0027	2.4090	0.1713	0.0199	0.4017	0.3357
10/90.70	0.0024	0.0003	0.0074	2.0475	0.1731	0.0012	0.4303	0.3409
16800.20	0.0033	0.0097	0.0707	2.0440	0.1872	0.8082	0.4401	0.3275
16803.62	0.0049	-0.0003	0.0756	2.4584	0.1440	0.7610	0.4009	0.3559
16807.04	0.0031	0.0070	0.0694	2.5296	0.1695	0.7612	0.4187	0.3390
16810.46	0.0015	0.0030	0.0704	2.5332	0.1628	0.7965	0.4493	0.3643
16813.88	0.0062	0.0021	0.0685	2.4790	0.1346	0.8125	0.4407	0.3162
16817.30	0.0048	0.0055	0.0802	2.6264	0.1838	0.8562	0.4037	0.2930
16820.72	0.0039	0.0066	0.0703	2.6072	0.1553	0.8535	0.3954	0.3408
16824.14	0.0045	0.0052	0.0958	2.6269	0.1698	0.8656	0.4319	0.3502
16827.56	0.0057	0.0076	0.0716	2.7016	0.1634	0.8639	0.4439	0.3592
16830.98	0.0034	0.0033	0.0742	2.5255	0.1667	0.7953	0.4179	0.3457
16834.40	0.0025	0.0024	0.0632	2.4808	0.1381	0.7478	0.3693	0.3506
16837.82	-0.0014	0.0068	0.0770	2.5676	0.1765	0.8036	0.3921	0.3540
16841.24	0.0014	0.0053	0.0807	2.5790	0.1466	0.7932	0.4178	0.3794
16844.66	0.0027	0.0022	0.0720	2.7031	0.1706	0.8573	0.4308	0.3658
16848.08	-0.0002	0.0046	0.0714	2.4927	0.1449	0.8988	0.4300	0.3293
16851.50	0.0063	0.0043	0.0606	2.5859	0.1537	0.8244	0.3998	0.3517
16854.92	0.0083	0.0062	0.0842	2.3734	0.1743	0.7646	0.3848	0.3421
16858.34	0.0081	0.0040	0.0518	2.5160	0.1338	0.8015	0.3751	0.3190
16861.76	0.0049	-0.0014	0.0805	2.5019	0.1687	0.8160	0.3721	0.3200
16865.18	0.0053	0.0032	0.0987	2.5266	0.1701	0.8171	0.4140	0.3235
16868.60	0.0051	0.0050	0.0771	2.4615	0.1525	0.8415	0.3934	0.3704
16872.02	0.0044	0.0005	0.0791	2.3202	0.1536	0.7712	0.3605	0.3273
16875.44	0.0033	0.0070	0.0737	2.5376	0.1296	0.8067	0.4066	0.3158
16878.86	0.0070	0.0021	0.0802	2.6064	0.1657	0.8405	0.3933	0.3270
16882.28	0.0002	0.0032	0.0666	2.5335	0.1392	0.8508	0.3856	0.3367
16885.70	0.0014	0.0017	0.0717	2.6473	0.1670	0.8409	0.4228	0.3526
16889.12	0.0021	0.0081	0.0766	2.5781	0.1704	0.8143	0.3671	0.3852
16892.54	0.0029	0.0012	0.0823	2.5112	0.1367	0.7791	0.3983	0.3551
16895.96	0.0040	0.0110	0.0787	2.5017	0.1763	0.7954	0.3985	0.3496
16899.38	0.0077	0.0068	0.0799	2.4533	0.1521	0.7852	0.3857	0.3356
16902.80	0.0006	0.0032	0.0760	2.5557	0.1845	0.8118	0.4279	0.3828
16906.22	0.0071	0.0020	0.0731	2.5118	0.1642	0.8008	0.3773	0.3198
16909.64	0.0058	0.0056	0.0645	2.4567	0.1580	0.7657	0.4211	0.3384
16913.06	0.0028	0.0046	0.0714	2.5548	0.1692	0.7592	0.3876	0.3618
16916.48	0.0052	0.0024	0.0595	2.5773	0.1539	0.8386	0.4223	0.3583
16919.90	0.0063	0.0047	0.0777	2.5676	0.1656	0.8336	0.4011	0.3661
16923.32	0.0062	0.0036	0.0745	2.5798	0.1576	0.8415	0.4273	0.3589
16926.74	0.0049	0.0023	0.0618	2.4449	0.1669	0.7987	0.3635	0.3149
16930.16	0.0044	0.0062	0.0686	2.5856	0.1451	0.8064	0.4166	0.3248
16933.58	0.0095	0.0093	0.0688	2.5175	0.1722	0.8624	0.4449	0.3824
16937.00	0.0032	0.0054	0.0728	2.5626	0.1624	0.8480	0.3959	0.3603

16940.42	0.0063	0.0035	0.0772	2.5064	0.1695	0.8403	0.4213	0.3339
16943.84	0.0079	0.0043	0.0772	2.6022	0.1466	0.7992	0.4221	0.3413
16947.26	0.0055	-0.0010	0.0978	2.5120	0.1472	0.7952	0.3968	0.3235
16950.68	0.0067	0.0088	0.0658	2.5466	0.1409	0.8601	0.4170	0.3568
16954.10	0.0040	0.0020	0.0857	2.5520	0.1442	0.8428	0.4396	0.3390
16957.52	0.0087	0.0050	0.0769	2.3629	0.1515	0.7412	0.3891	0.3151
16960.94	0.0020	0.0005	0.0690	2.4538	0.1726	0.7704	0.4140	0.3257
16964.36	0.0036	0.0045	0.0733	2.3451	0.1430	0.7808	0.3767	0.3217
16967.78	0.0030	0.0015	0.0756	2.4502	0.1391	0.7515	0.3872	0.3402
16971.20	0.0050	0.0034	0.0704	2.5120	0.1610	0.8295	0.4424	0.3690
16974.62	0.0009	0.0069	0.0678	2.5272	0.1418	0.8128	0.4115	0.3409
16978.04	0.0082	0.0034	0.0690	2.5514	0.1433	0.8188	0.3957	0.3407
16981.46	0.0039	0.0027	0.0682	2.5681	0.1520	0.8107	0.4266	0.3581
16984.88	0.0032	0.0016	0.0663	2.5783	0.1714	0.8147	0.3916	0.3321
16988.30	0.0027	0.0043	0.0777	2.4433	0.1551	0.8129	0.4216	0.3270
16991.72	0.0080	0.0060	0.0740	2.5902	0.1582	0.7695	0.4000	0.3289
16995.14	0.0076	0.0052	0.0839	2.4499	0.1711	0.8208	0.4236	0.3668
16998.56	0.0017	0.0030	0.0753	2.5709	0.1680	0.8355	0.4220	0.3154
17001.98	0.0053	0.0058	0.0725	2.3820	0.1490	0.7716	0.3643	0.3484
17005.40	0.0046	0.0041	0.0768	2.5243	0.1590	0.8443	0.4044	0.3945
17008.82	0.0039	0.0030	0.0699	2.5951	0.1619	0.8118	0.4386	0.3752
17012.24	0.0047	0.0061	0.0856	2.5957	0.1967	0.7906	0.4446	0.3624
17015.66	0.0032	0.0087	0.0729	2.7077	0.1693	0.8140	0.4358	0.3576
17019.08	0.0082	0.0035	0.0723	2.6439	0.1463	0.8413	0.4362	0.3562
17022.50	0.0069	0.0064	0.0739	2.5308	0.1611	0.8091	0.3837	0.3492
17025.92	0.0066	0.0019	0.0791	2.5292	0.1692	0.7845	0.3852	0.3463
17029.34	0.0091	0.0033	0.0798	2.5158	0.1776	0.8370	0.3911	0.3572
17032.76	0.0063	0.0031	0.0637	2.3775	0.1284	0.7155	0.3880	0.3120
17036.18	0.0016	0.0033	0.0736	2.5601	0.1551	0.7738	0.3969	0.3437
17039.60	0.0040	0.0028	0.0749	2.3970	0.1456	0.8025	0.3943	0.3357
17043.02	0.0058	0.0035	0.0759	2.4360	0.1475	0.8308	0.3886	0.3066
17046.44	0.0048	-0.0003	0.0821	2.5336	0.1520	0.7647	0.3989	0.3692
17049.86	0.0017	0.0052	0.0728	2.6166	0.1739	0.8533	0.3785	0.3643
17053.28	0.0052	0.0037	0.0844	2.5918	0.1545	0.8319	0.4325	0.3758
17056.70	0.0101	0.0022	0.0742	2.6012	0.1453	0.8289	0.4278	0.3314
17060.12	0.0056	0.0040	0.0776	2.6980	0.1556	0.8447	0.3979	0.4061
17063.54	0.0050	0.0031	0.0632	2.3996	0.1604	0.7519	0.3628	0.3529
17066.96	0.0031	0.0066	0.0686	2.6052	0.1655	0.8198	0.4016	0.3409
17070.38	0.0022	0.0025	0.0790	2.3687	0.1424	0.8140	0.4142	0.3328
17073.80	0.0047	0.0042	0.0815	2.4750	0.1401	0.7582	0.4173	0.3365
17077.22	0.0110	0.0051	0.0773	2.5931	0.1578	0.8323	0.4704	0.3317
17080.64	0.0030	0.0057	0.0748	2.5949	0.1531	0.8011	0.3857	0.3381
17084.06	0.0038	0.0012	0.0681	2.5833	0.1665	0.8198	0.4052	0.3263
17087.48	0.0039	0.0045	0.0703	2.4184	0.1561	0.8414	0.3744	0.3310
17090.90	0.0056	0.0041	0.0723	2.4434	0.1671	0.7713	0.4185	0.3113
17094.32	0.0039	0.0018	0.0653	2.4421	0.1571	0.8054	0.3819	0.3513
1/097.74	0.0042	0.0022	0.0/37	2.5639	0.1613	0.8247	0.4278	0.3692
1/101.16	0.0046	0.0038	0.0661	2.4773	0.1496	0.7867	0.4290	0.3630
17104.58	0.0072	0.0004	0.0886	2.4555	0.1784	0.7804	0.4091	0.3300
17108.00	0.0056	0.0033	0.0727	2.6027	0.1582	0.859/	0.4067	0.3507
17111.42	0.0083	0.0001	0.0762	2.4582	0.1539	0.7594	0.4058	0.3330
17114.84	0.0045	-0.0003	0.00/9	2.3854	0.1553	0.7029	0.3513	0.3523
1/118.26	0.0059	0.0022	0.0742	2.6014	0.1655	0.7848	0.4276	0.3666
1/121.68	0.0054	0.0046	0.0765	2.5957	0.1351	0.8484	0.3982	0.3624

17125.10	0.0055	0.0033	0.0605	2.4843	0.1348	0.7853	0.3999	0.3257
17128.52	0.0033	0.0063	0.0858	2.5253	0.1550	0.8103	0.4006	0.3207
17131.94	0.0094	0.0018	0.0891	2.6182	0.1831	0.8183	0.4067	0.3766
17135.36	0.0066	0.0011	0.0806	2.5574	0.1774	0.7876	0.3930	0.3476
17138.78	0.0028	0.0080	0.0619	2.4667	0.1488	0.7737	0.3973	0.3328
17142.20	0.0021	0.0068	0.0784	2.4251	0.1497	0.8091	0.3634	0.3209
17145.62	0.0056	0.0012	0.0849	2.7383	0.1632	0.8376	0.4664	0.3491
17149.04	0.0051	0.0030	0.0726	2.4988	0.1517	0.7612	0.3785	0.3484
17152.46	0.0035	0.0022	0.0827	2.7357	0.1801	0.8591	0.4425	0.3902
17155.88	0.0037	0.0042	0.0730	2.3341	0.1322	0.7809	0.3798	0.3547
17159.30	0.0059	0.0011	0.0788	2.4330	0.1621	0.7768	0.3282	0.3648
17162.72	0.0025	-0.0003	0.0723	2.5005	0.1737	0.7895	0.3843	0.3556
17166.14	0.0079	0.0051	0.0598	2.5114	0.1553	0.8345	0.4069	0.3267
17169.56	0.0041	0.0056	0.0649	2.4684	0.1599	0.7863	0.3905	0.3449
17172.98	0.0043	0.0025	0.0669	2.6167	0.1686	0.8421	0.4013	0.3432
17176.40	0.0054	0.0039	0.0740	2.6024	0.1664	0.8553	0.4436	0.3544
17179.82	0.0025	0.0021	0.0753	2.5932	0.1623	0.8221	0.4033	0.3286
17183.24	0.0032	0.0004	0.0834	2.5422	0.1485	0.8394	0.3991	0.3681
17186.66	0.0044	0.0046	0.0819	2.6725	0.1765	0.8428	0.4061	0.3282
17190.08	0.0060	0.0059	0.0797	2.6956	0.1697	0.8765	0.4233	0.3718
17193.50	0.0044	0.0022	0.0824	2.6853	0.1644	0.8269	0.4104	0.3661
17196.92	0.0028	0.0030	0.0694	2.4938	0.1259	0.7456	0.3705	0.3376
17200.34	0.0062	0.0037	0.0716	2.4878	0.1748	0.7982	0.4251	0.3499
17203.76	0.0059	-0.0002	0.0725	2.4207	0.1466	0.8047	0.3891	0.3541
17207.18	0.0071	0.0037	0.0795	2.5038	0.1706	0.8206	0.3952	0.3293
17210.60	0.0058	0.0017	0.0823	2.5232	0.1603	0.7855	0.3595	0.3193
17214.02	0.0056	0.0042	0.0638	2.4775	0.1445	0.7874	0.3989	0.3084
17217.44	0.0028	0.0073	0.0816	2.5418	0.1646	0.8020	0.4054	0.3611
17220.86	0.0059	0.0035	0.0670	2.3569	0.1528	0.8072	0.3832	0.3262
17224.28	0.0034	0.0046	0.0688	2.4595	0.1595	0.8601	0.3823	0.3280
17227.70	0.0032	0.0044	0.0846	2.5336	0.1582	0.8476	0.4115	0.3556
17231.12	0.0052	0.0020	0.0842	2.4555	0.1552	0.7968	0.3869	0.3421
17234.54	0.0027	0.0026	0.0755	2.4227	0.1653	0.8108	0.3804	0.3497
17237.96	0.0105	0.0049	0.0919	2.6298	0.1638	0.8179	0.3866	0.3728
17241.38	0.0050	0.0033	0.0693	2.4952	0.1657	0.8253	0.3518	0.3546
17244.80	0.0027	0.0086	0.0827	2.5769	0.1630	0.7904	0.3970	0.3458
17248.22	0.0046	0.0023	0.0733	2.4667	0.1621	0.8054	0.4047	0.3299
17251.64	0.0042	0.0047	0.0792	2.7060	0.1688	0.8172	0.4137	0.3522
17255.06	0.0049	0.0067	0.0781	2.5192	0.1724	0.8402	0.4203	0.3511
17258.48	0.0039	0.0031	0.0657	2.4591	0.1543	0.7750	0.3608	0.3480
17261.90	0.0026	0.0047	0.0732	2.3529	0.1475	0.7283	0.3714	0.3508
17265.32	0.0082	0.0061	0.0749	2.5051	0.1554	0.8055	0.3898	0.3257
17268.74	0.0063	0.0017	0.0668	2.5647	0.1490	0.8023	0.4087	0.3565
17272.16	0.0039	0.0066	0.0766	2.5073	0.1694	0.7898	0.3862	0.3239
17275.58	0.0038	0.0066	0.0634	2.5872	0.1491	0.8341	0.3862	0.3672

Time	¹²⁴ Xe/ ¹³² Xe	¹²⁶ Xe/ ¹³² Xe	¹²⁸ Xe/ ¹³² Xe	¹²⁹ Xe/ ¹³² Xe	¹³⁰ Xe/ ¹³² Xe	¹³¹ Xe/ ¹³² Xe	¹³⁴ Xe/ ¹³² Xe	¹³⁶ Xe/ ¹³² Xe
14803.42	0.0061	-0.0002	0.1100	2.4491	0.1669	0.7960	0.3720	0.3641
14808.3	0.0009	0.0057	0.0565	2.5699	0.1596	0.7936	0.3718	0.3246
14813.18	0.0037	0.0038	0.0766	2.5643	0.1402	0.8408	0.4341	0.3232
14818.06	0.0070	0.0059	0.0628	2.4474	0.1555	0.7141	0.3852	0.3365
14822.94	0.0057	0.0004	0.0729	2.6685	0.1677	0.8729	0.4593	0.4178
14827.82	0.0020	0.0039	0.0684	2.5624	0.1717	0.8171	0.4058	0.3443
14832.7	0.0025	-0.0030	0.0677	2.6697	0.1607	0.8533	0.3791	0.3382
14837.58	0.0063	0.0051	0.0888	2.7488	0.1529	0.8679	0.4304	0.4083
14842.46	0.0069	0.0025	0.0718	2.4486	0.1681	0.7848	0.4247	0.3439
14847.34	0.0069	0.0053	0.0798	2.4787	0.1548	0.8489	0.3830	0.3464
14852.22	0.0049	0.0129	0.0814	2.6781	0.1535	0.8750	0.4575	0.4045
14857.1	0.0056	-0.0002	0.0799	2.4761	0.1299	0.8019	0.3774	0.3779
14861.98	0.0012	0.0003	0.0838	2.4539	0.1697	0.7835	0.4038	0.3235
14866.86	0.0044	0.0075	0.0952	2.4699	0.1481	0.8522	0.3778	0.3396
14871.74	0.0045	0.0003	0.0678	2.6033	0.1638	0.8119	0.3799	0.3915
14876.62	0.0052	0.0052	0.0827	2.4428	0.1591	0.8014	0.3998	0.3221
14881.5	0.0013	0.0072	0.0672	2.5429	0.1868	0.8234	0.3864	0.3715
14886.38	0.0039	0.0023	0.0765	2.6384	0.1604	0.7735	0.4043	0.3523
14891.26	0.0043	0.0003	0.0683	2.4693	0.1680	0.8296	0.3663	0.3268
14896.14	0.0032	0.0115	0.0731	2.5201	0.1347	0.8099	0.3691	0.3220
14901.02	0.0021	0.0040	0.0706	2.5274	0.1676	0.8359	0.3637	0.3111
14905.9	0.0051	0.0022	0.0700	2.4834	0.1368	0.7853	0.4335	0.3499
14910.78	0.0071	0.0085	0.0814	2.5604	0.1506	0.8040	0.3861	0.3555
14915.66	0.0061	0.0003	0.0735	2.5235	0.1596	0.8536	0.4319	0.3315
14920.54	0.0044	0.0012	0.0781	2.4129	0.1542	0.8115	0.3815	0.3577
14925.42	0.0039	0.0052	0.0737	2.3039	0.1660	0.7979	0.3597	0.3096
14930.3	0.0066	0.0041	0.0874	2.5332	0.1807	0.8365	0.4289	0.3472
14935.18	0.0084	0.0040	0.0729	2.6360	0.1714	0.8423	0.3899	0.3612
14940.06	0.0068	0.0081	0.0628	2.5684	0.1259	0.8289	0.3757	0.3337
14944.94	0.0051	0.0036	0.0813	2.6690	0.1442	0.8806	0.4137	0.4425
14949.82	0.0045	0.0087	0.0838	2.4112	0.1325	0.7396	0.3926	0.3497
14954.7	0.0055	0.0020	0.0769	2.3616	0.1502	0.7332	0.3815	0.2982
14959.58	0.0091	0.0020	0.0719	2.4433	0.1410	0.8041	0.3910	0.3477
14964.46	0.0092	0.0012	0.0803	2.7555	0.1755	0.8088	0.4595	0.3949
14969.34	0.0038	0.0077	0.0847	2.4455	0.1452	0.8197	0.3847	0.3458
14974.22	0.0058	0.0088	0.0836	2.4029	0.1742	0.7942	0.3563	0.3478
14979.1	0.0055	0.0072	0.0728	2.5998	0.1571	0.7908	0.4094	0.3316
14983.98	0.0071	0.0019	0.0661	2.5399	0.1642	0.7433	0.4107	0.3374
14988.86	0.0035	0.0060	0.0630	2.4260	0.1497	0.7517	0.4065	0.3599
14993.74	0.0078	-0.0020	0.0701	2.6735	0.1698	0.8409	0.3966	0.3670
14998.62	0.0038	0.0011	0.0803	2.7990	0.1707	0.8474	0.4223	0.3409

305 Experiment 25253 Xenon Isotopic Ratio Data

15003.5	0.0027	0.0039	0.0644	2.4509	0.1682	0.7528	0.3679	0.3209
15008.38	0.0033	0.0041	0.0711	2.2735	0.1618	0.7582	0.3562	0.3232
15013.26	0.0056	0.0068	0.0633	2.5633	0.1655	0.7800	0.4287	0.3266
15018.14	-0.0007	0.0063	0.0770	2.5032	0.1589	0.8118	0.3752	0.3619
15023.02	0.0028	0.0032	0.0909	2.6873	0.1700	0.8168	0.3871	0.3511
15027.9	0.0027	0.0043	0.0727	2.5005	0.1460	0.8173	0.4039	0.3477
15032.78	0.0018	0.0002	0.0816	2.4501	0.1571	0.7525	0.4067	0.3577
15037.66	0.0110	0.0021	0.0764	2.4491	0.1580	0.8005	0.3836	0.3324
15042.54	0.0051	0.0050	0.0686	2.4522	0.1807	0.8363	0.3642	0.3537
15047.42	0.0034	0.0026	0.0630	2.5183	0.1804	0.7913	0.3809	0.3613
15052.3	0.0083	0.0018	0.0648	2.6655	0.1551	0.8035	0.4181	0.3587
15057.18	0.0051	0.0034	0.0917	2.6091	0.1808	0.8403	0.4168	0.3385
15062.06	0.0070	0.0025	0.0712	2.5289	0.1347	0.8492	0.4077	0.3418
15066.94	0.0072	0.0025	0.0715	2.4857	0.1443	0.7753	0.3873	0.3261
15071.82	0.0001	0.0041	0.0767	2.5676	0.1728	0.8033	0.4062	0.3421
15076.7	0.0032	0.0009	0.0639	2.4989	0.1486	0.7668	0.4130	0.3178
15081.58	0.0032	0.0024	0.0674	2.4612	0.1600	0.8446	0.4005	0.3410
15086.46	0.0048	0.0025	0.0652	2.5875	0.1477	0.8507	0.4002	0.3639
15091.34	0.0032	0.0009	0.0835	2.4599	0.1407	0.8034	0.4214	0.3613
15096.22	0.0081	0.0033	0.0775	2.5965	0.1727	0.8460	0.4271	0.3603
15101.1	0.0036	0.0043	0.0710	2.5407	0.1450	0.8618	0.4084	0.3682
15105.98	0.0097	0.0056	0.0811	2.7163	0.1753	0.8213	0.4493	0.3752
15110.86	0.0038	0.0038	0.0710	2.5108	0.1596	0.7442	0.4061	0.3059
15115.74	0.0030	0.0005	0.0843	2.3894	0.1763	0.7935	0.3393	0.3169
15120.62	0.0026	0.0022	0.0781	2.4569	0.1541	0.7696	0.3877	0.3340
15125.5	0.0048	0.0008	0.0716	2.4621	0.1577	0.7928	0.3909	0.3615
15130.38	0.0064	0.0030	0.0805	2.6013	0.1905	0.8569	0.3964	0.3676
15135.26	0.0043	0.0018	0.0761	2.3799	0.1589	0.7612	0.3974	0.3286
15140.14	0.0066	0.0012	0.0897	2.4838	0.1723	0.8021	0.3864	0.3872
15145.02	0.0098	0.0054	0.0841	2.4733	0.1368	0.8370	0.4067	0.3227
15149.9	0.0031	0.0037	0.0807	2.5622	0.1393	0.8649	0.4393	0.3520
15154.78	0.0005	0.0036	0.0671	2.4628	0.1586	0.8134	0.3944	0.3336
15159.66	0.0034	0.0109	0.0876	2.6596	0.1523	0.8547	0.3680	0.3509
L								

313 Experiment ID#25111 Krypton Isotopic Ratio Data

Time	⁸⁰ Kr/ ⁸⁴ /Kr	⁸² Kr/ ⁸⁴ /Kr	⁸³ Kr/ ⁸⁴ /Kr	⁸⁶ Kr/ ⁸⁴ /Kr
16917.08	0.0624	0.2868	0.0805	0.2135
17394.48	0.0716	0.1497	0.1132	0.3029
17400.60	0.0587	0.2265	0.1278	0.2236
17406.72	0.0142	0.2213	0.1378	0.1975
17412.84	0.0452	0.1959	0.1929	0.2721
17418.96	0.0522	0.2188	0.2040	0.2702
17425.08	0.0693	0.1871	0.1947	0.2342
17431.20	0.0079	0.2946	0.2511	0.4051
17437.32	0.1263	0.1640	0.1751	0.2649
17443.44	0.1041	0.3425	0.1630	0.2124
17449.56	0.0642	0.2687	0.2640	0.4023
17455.68	0.1149	0.2655	0.2476	0.2809
17461.80	0.0649	0.2578	0.2683	0.2205
17467.92	0.0634	0.3680	0.2269	0.4234
17474.04	0.0768	0.2940	0.2770	0.3690
17480.16	0.1357	0.1452	0.2563	0.3757
17486.28	0.0486	0.2026	0.2339	0.3474
17492.40	0.0210	0.2401	0.2745	0.2023
17498.52	0.0608	0.2165	0.1319	0.2892
17504.64	0.0957	0.2060	0.1998	0.2733
17510.76	0.0870	0.2346	0.1897	0.3631
17516.88	0.0716	0.0882	0.1485	0.2055
17523.00	0.0215	0.1027	0.1320	0.2724
17529.12	0.0687	0.2755	0.2136	0.1832
17535.24	0.0032	0.1575	0.1970	0.3694
17541.36	0.0603	0.2261	0.1763	0.3472
17547.48	0.0605	0.1716	0.1616	0.2093
17553.60	0.1076	0.2365	0.2310	0.3409
17559.72	0.0290	0.4459	0.2790	0.3402
17565.84	0.0833	0.2651	0.2412	0.3487
17571.96	-0.0113	0.1603	0.2846	0.3567
17578.08	0.0660	0.2018	0.1315	0.2186
17584.20	0.0909	0.1335	0.2524	0.2588
17590.32	0.0398	0.1955	0.1763	0.2982
17596.44	0.1001	0.1793	0.2779	0.2837
17602.56	0.0294	0.1480	0.2027	0.3325
17608.68	0.0936	0.3463	0.1746	0.3834
17614.80	0.0217	0.2767	0.2119	0.3624
17620.92	0.0588	0.1773	0.1514	0.3636
17627.04	0.0335	0.1955	0.1949	0.2835
17633.16	0.1096	0.1720	0.2027	0.4036
17639.28	0.0509	0.2340	0.1369	0.2611
17676.48	0.0451	0.2413	0.2048	0.2973
17682.60	0.0548	0.2426	0.1951	0.2106
17688.72	0.1087	0.2193	0.1977	0.3193
17694.84	0.0596	0.1968	0.2047	0.2379
17700.96	0.0706	0.1181	0.2247	0.3988
17707.08	0.0352	0.1498	0.1399	0.3347
17713.20	0.0444	0.1648	0.1631	0.3418
17719.32	0.0510	0.1955	0.1502	0.2786

17725.44	0.0355	0.1982	0.1567	0.2470
17731.56	0.0920	0.2037	0.3273	0.3613
17737.68	0.0993	0.1921	0.2133	0.3060
17743.80	0.1336	0.1776	0.2509	0.4175
17749.92	0.1357	0.2750	0.2100	0.4365
17756.04	0.0291	0.1113	0.1909	0.1755
17762.16	0.0946	0.1353	0.1967	0.4022
17768.28	0.0309	0.2683	0.2537	0.3093
17774.40	0.0787	0.2145	0.2139	0.3156
17780.52	0.0603	0.2201	0.1567	0.2751
17786.64	0.0337	0.1840	0.2129	0.2470
17792.76	0.0351	0.2566	0.2089	0.2754
17798.88	0.1320	0.2097	0.2540	0.3370
17805.00	0.0710	0.1667	0.1641	0.2400
17811.12	0.1002	0.2426	0.2149	0.2389
17817.24	0.0729	0.1572	0.2563	0.3478
17823.36	0.0533	0.2996	0.2209	0.3211
17829.48	0.0414	0.2120	0.0934	0.2677
17835.60	0.0407	0.2117	0.2437	0.3597
17841.72	0.0556	0.2788	0.2124	0.2469
17847.84	0.0759	0.2293	0.2214	0.3266
17853.96	0.0409	0.3258	0.2218	0.4480
17860.08	0.1159	0.3476	0.2030	0.3941
17866.20	0.0579	0.2074	0.2562	0.2420
17872.32	0.0835	0.2066	0.3037	0.3365
17878.44	0.0725	0.2795	0.2038	0.2657
17884.56	0.0445	0.1256	0.2170	0.3177
17890.68	0.1800	0.1927	0.3101	0.3330
17896.80	0.1238	0.3722	0.2655	0.2440
17902.92	0.0201	0.2742	0.2478	0.2849
17909.04	0.1047	0.1860	0.1885	0.3109
17915.16	0.0993	0.2583	0.2083	0.3506
17921.28	0.0826	0.2230	0.2437	0.3197
18400.68	0.0585	0.2788	0.1786	0.2709
18406.80	0.0745	0.1802	0.2413	0.1976
18412.92	0.0658	0.1650	0.1922	0.2625
18419.04	0.0995	0.2490	0.2811	0.3919
18425.16	0.0509	0.1710	0.1903	0.3002
18431.28	0.0471	0.1715	0.1207	0.2800
18437.40	0.0878	0.2722	0.1991	0.3119
18443.52	0.0228	0.3157	0.1312	0.2476
18449.64	0.0626	0.1891	0.3014	0.2020
18455.76	0.0332	0.1891	0.2108	0.3989
18461.88	0.0722	0.2429	0.1541	0.3876
18468.00	0.0174	0.1833	0.2046	0.2679
18474.12	0.0790	0.3781	0.1493	0.2656
18480.24	0.0408	0.1763	0.1591	0.2302
18486.36	0.1004	0.2123	0.2317	0.2876
18492.48	0.1194	0.1613	0.1151	0.2569
18498.60	0.0423	0.1667	0.1814	0.2814
18504.72	0.0224	0.1069	0.2497	0.2097
18510.84	0.0126	0.2052	0.2216	0.4059
18516.96	0.0671	0.2656	0.0887	0.3113
18523.08	0.0898	0.1379	0.1248	0.2193

18529.20	0.0440	0.2021	0.1420	0.4120
18535.32	0.0569	0.2869	0.2076	0.3771
18541.44	0.0033	0.2543	0.1983	0.3425
18547.56	0.0664	0.2032	0.1557	0.2570
18553.68	-0.0054	0.2755	0.2159	0.3115
18559.80	0.1005	0.2606	0.2128	0.3055
18565.92	0.0612	0.3128	0.1546	0.3665
18572.04	0.0405	0 1488	0 1269	0 2570
18578 16	0.0715	0 2662	0 2973	0.3795
18584 28	0.0600	0 1808	0.2027	0 2642
18590.40	0 1455	0 1803	0.2641	0.3134
18596 52	0 1513	0.3578	0.3388	0.3365
18602.64	0.0040	0 1991	0.2371	0.3930
18608 76	0.0550	0.1551	0.1801	0.3079
1861/188	0.000	0.2308	0.1001	0.3073
18621.00	0.1750	0.2300	0.2314	0.0400
18627.12	0.0390	0.2400	0.2113	0.2342
18633.24	0.0433	0.0142	0.1004	0.3540
18630.36	0.0012	0.1004	0.1221	0.2390
19645 49	0.1025	0.2237	0.1000	0.3209
10040.40	0.0509	0.1925	0.1771	0.2400
10001.00	0.0013	0.1901	0.2700	0.2900
10007.00	0.0970	0.1331	0.2175	0.2907
10093.92	0.0400	0.2150	0.1912	0.2091
10/00.04	0.0007	0.2209	0.2040	0.3439
10/00.10	0.0452	0.2102	0.1043	0.3100
10/12.20	0.0593	0.1204	0.10/7	0.2001
18/18.40	0.1000	0.3190	0.3248	0.4170
18724.52	0.0611	0.2239	0.1268	0.1462
18730.64	0.0510	0.2624	0.2667	0.3131
18/30.76	0.0703	0.3441	0.1069	0.4385
18/42.88	0.0642	0.1460	0.2359	0.3110
18749.00	0.0412	0.3045	0.0903	0.3013
18755.12	0.0715	0.3044	0.2229	0.1572
18/61.24	0.0420	0.1620	0.2517	0.2792
18/6/.36	0.1005	0.1631	0.2599	0.3119
18773.48	0.1321	0.2275	0.3108	0.3539
18779.60	0.0703	0.3677	0.3071	0.2734
18/85./2	0.1045	0.1641	0.1596	0.3603
18/91.84	0.0933	0.1015	0.1887	0.3998
18/9/.96	0.0608	0.3441	0.2924	0.3973
18804.08	0.0763	0.2163	0.1958	0.4098
18810.20	0.0560	0.1473	0.1705	0.4518
18816.32	0.1280	0.1755	0.2065	0.2448
18822.44	0.0679	0.2959	0.2825	0.3290
18828.56	0.0412	0.2301	0.2327	0.3668
18834.68	0.0619	0.2601	0.2907	0.3648
18840.80	0.0706	0.1708	0.1421	0.3014
18846.92	0.0509	0.2831	0.2982	0.3495
18853.04	0.0336	0.2207	0.2589	0.3117
18859.16	0.0695	0.2093	0.2301	0.2675
18865.28	0.0748	0.2628	0.2545	0.3881
18871.40	0.0671	0.2091	0.2236	0.1823
18877.52	0.1131	0.2975	0.1558	0.3853
18883.64	0.0599	0.1978	0.1824	0.4053

18889.76	0.0563	0.1939	0.1516	0.3681
18895.88	0.0676	0.1836	0.1775	0.3498
18902.00	0.0350	0.1593	0.1502	0.2483
18908.12	0.0870	0.1854	0.1918	0.2528
18914.24	0.1131	0.2315	0.1809	0.3439
18920.36	0.1381	0.2666	0.1948	0.3372
18926.48	0.0633	0.3535	0.1978	0.3493
19402.88	0.0469	0.1758	0.2232	0.3155
19409.00	0.0482	0.2277	0.1906	0.2931
19415.12	0.0825	0.1849	0.1638	0.2410
19421.24	0.0689	0.2321	0.1534	0.3205
19427.36	0.0366	0.1274	0.1798	0.2317
19433.48	0.0453	0.1963	0.1931	0.3281
19439.60	0.0458	0.1182	0.1606	0.3492
19445.72	0.0346	0.1802	0.2142	0.3204
19451.84	0.0693	0.2495	0.1498	0.2326
19457.96	0.0738	0.2264	0.1847	0.3474
19464.08	0.1263	0.2055	0.1475	0.3715
19470.20	0.1268	0.2817	0.1806	0.3266
19476.32	0.0654	0.2475	0.2701	0.3567
19482.44	0.0980	0.2313	0.1460	0.3194
19488.56	0.0260	0.1704	0.1612	0.2649
19494.68	0.0406	0.2387	0.2391	0.3947
19500.80	0.0641	0.2321	0.1671	0.4513
19506.92	0.0466	0.1287	0.2353	0.3073
19513.04	0.0342	0.2523	0.2574	0.4675
19519.16	0.0965	0.2260	0.2536	0.3795
19525.28	0.0876	0.1844	0.2480	0.3438
19531.40	0.0566	0.2234	0.1886	0.3865
19537.52	0.0421	0.1879	0.1652	0.3601
19543.64	0.0670	0.2174	0.2566	0.2756
19549.76	0.0608	0.2203	0.0966	0.2827
19555.88	0.0529	0.2003	0.1637	0.2683
19562.00	0.0775	0.1759	0.1541	0.3267
19568.12	0.0487	0.3129	0.2443	0.3993
19574.24	0.0494	0.1756	0.1606	0.2383
19580.36	0.1145	0.2053	0.2303	0.3402
19586.48	0.0384	0.3163	0.3401	0.3652
19592.60	0.0526	0.2383	0.1852	0.3176
19598.72	0.0325	0.1891	0.1381	0.3307
19604.84	0.0310	0.2920	0.2415	0.3231
19610.96	0.0730	0.2146	0.2677	0.3063
19617.08	0.0728	0.1176	0.1651	0.2830
19623.20	0.0214	0.1254	0.1533	0.2914
19629.32	0.0651	0.3398	0.1492	0.3029
19635.44	0.0994	0.1679	0.2027	0.2095
19641.56	0.0472	0.2090	0.2522	0.3213
19647.68	0.0603	0.2032	0.2228	0.3630
19684.88	0.0610	0.2112	0.2513	0.3172
19691.00	0.0760	0.2465	0.1696	0.5140
19697.12	0.0705	0.1811	0.1596	0.2533
19703.24	0.0689	0.2380	0.1564	0.2680
19709.36	0.0484	0.2366	0.1579	0.3629
19715.48	0.0884	0.1904	0.1741	0.3475

19721.60	0.0759	0.2337	0.2028	0.3017
19727.72	0.0737	0.2822	0.2627	0.2949
19733.84	0.0372	0.2390	0.2173	0.2926
19739.96	0.0795	0.1947	0.2146	0.3142
19746.08	0.1349	0.2051	0.2607	0.3339
19752.20	0.0403	0.1569	0.1864	0.2002
19758.32	0.0610	0.1772	0.1817	0.3061
19764.44	0.0555	0.2645	0.1725	0.2930
19770.56	0.0654	0.2631	0.1218	0.3337
19776.68	0.1052	0.2265	0.1806	0.4196
19782.80	0.1098	0.3157	0.2816	0.4668
19788.92	0.0425	0.1845	0.1511	0.3023
19795.04	0.0879	0.1990	0.1423	0.4335
19801.16	0.0768	0.2399	0.2097	0.3801
19807.28	0.0469	0.2112	0.1801	0.3744
19813.40	0.0546	0.1845	0.0960	0.1826
19819.52	0.0711	0.2304	0.1795	0.3213
19825.64	0.0549	0.2573	0.1426	0.2767
19831.76	0.0454	0.2835	0.2674	0.4374
19837.88	0.0620	0.2208	0.1618	0.2502
19844.00	0.0683	0.1706	0.1709	0.3714
19850.12	0.0490	0.1676	0.2581	0.3255
19856.24	0.0569	0.3273	0.2659	0.3416
19862.36	0.0663	0.2401	0.1729	0.2537
19868.48	0.0919	0.1574	0.2164	0.3342
19874.6	0.0376	0.1766	0.2007	0.1900
19880.72	0.0802	0.2501	0.2023	0.3725
19886.84	0.1071	0.2027	0.2189	0.3334
19892.96	0.0497	0.2361	0.2115	0.2272
19899.08	0.0432	0.3117	0.2094	0.2708
19905.2	0.0331	0.1842	0.1564	0.3793
19911.32	0.0319	0.1438	0.2272	0.2205
19917.44	0.0292	0.1518	0.1025	0.3305
19923.56	0.0905	0.1756	0.2690	0.2888
19929.68	0.0372	0.3108	0.1668	0.2711

323 Experiment 25269 Krypton Isotopic Ratio Data

Time	⁸⁰ Kr/ ⁸⁴ /Kr	⁸² Kr/ ⁸⁴ /Kr	⁸³ Kr/ ⁸⁴ /Kr	⁸⁶ Kr/ ⁸⁴ /Kr
18357.16	-0.0021	0.1086	0.2016	0.1668
18359.76	0.0749	0.2390	0.1871	0.0865
18362.36	0.0710	0.1571	0.2678	0.2813
18364.96	0.0718	0.1306	0.1035	0.1257
18367.56	0.0135	0.2354	0.3125	0.3489
18370.16	0.1485	0.2151	0.3388	0.2183
18372.76	0.1921	0.2801	0.1269	0.3885
18375.36	0.0539	0.3129	0.1811	0.2568
18377.96	0.0419	0.3171	0.0766	0.2161
18380.56	0.0497	0.2512	0.2920	0.4921
18383.16	0.0372	0.2406	0.1810	0.3123
18385.76	0.0137	0.1892	0.0764	0.2135
18388.36	0.0758	0.2210	0.1166	0.5461
18390.96	0.1403	0.0775	0.2140	0.4093
18393.56	-0.0517	0.3175	0.3392	0.3928
18396.16	-0.0529	0.1855	0.1858	0.2737
18398.76	0.0755	0.0957	0.1594	0.2043
18401.36	-0.0066	0.2689	0.3991	0.1369
18403.96	0.1175	0.2722	0.3926	0.2123
18406.56	0.1971	0.4892	0.2743	0.4552
18409.16	0.0795	0.2925	0.1523	0.2437
18411.76	0.1372	0.2629	0.4691	0.4603
18414.36	0.1491	0.1837	0.1380	0.1367
18416.96	0.0536	0.3630	0.2155	0.3493
18419.56	0.1775	0.4077	0.2019	0.4703
18422.16	0.0490	0.2751	0.0451	0.1993
18424.76	0.0836	0.0847	0.2714	0.2395
18427.36	0.0533	0.2269	0.1776	0.0818
18429.96	0.1801	0.3915	0.3728	0.4653
18432.56	0.0907	0.2237	0.0672	0.3945
18435.16	0.0267	0.1593	0.2072	0.3551
18437.76	0.1005	0.2867	0.3010	0.4104
18440.36	0.1472	0.2714	0.2029	0.4093
18442.96	0.0882	0.1768	0.3546	0.3245
18445.56	0.0882	0.2535	0.1479	0.5095
18448.16	0.0915	0.2401	0.2014	0.3705
18450.76	0.1125	0.0925	0.2209	0.2041
18453.36	0.0531	0.1993	0.1922	0.4489
18455.96	-0.0102	0.2645	0.2214	0.3073
18458.56	0.0205	0.3542	0.3794	0.4457
18461.16	0.1054	0.3571	0.1347	0.3112

18463.76	0.0745	0.3094	0.2884	0.2974
18466.36	0.0987	0.3187	0.1682	0.2287
18468.96	0.0964	0.3893	0.3304	0.3487
18471.56	0.0547	0.2153	0.2104	0.1438
18474.16	0.0910	0.2677	0.1127	0.1661
18476.76	0.0254	0.1851	0.2100	0.2112
18479.36	0.0892	0.2530	0.1748	0.2877
18481.96	0.0461	0.1348	0.2922	0.1901
18484.56	0.0949	0.1608	0.1521	0.2456
18487.16	0.1887	0.2003	0.1164	0.3837
18489.76	-0.0113	0.2451	0.3219	0.2734
18492.36	0.1140	0.1165	0.0817	0.3768
18494.96	0.0584	0.1112	0.2271	0.2544
18497.56	0.1160	0.1992	0.2598	0.2082
18500.16	0.0084	0.1355	0.2067	0.1461
18502.76	0.0496	0.2216	0.0927	0.2384
18505.36	0.0220	0.1839	0.2069	0.2508
18507.96	0.0781	0.2393	0.1542	0.1394
18510.56	0.0568	0.1990	0.1748	0.3734
18513.16	0.0339	0.2589	0.1801	0.3161
18515.76	0.1311	0.2439	0.2011	0.3110
18518.36	0.0958	0.1427	0.1354	0.1411
18520.96	0.1032	0.1479	0.3266	0.3974
18523.56	0.1108	0.2677	0.2959	0.4218
18526.16	0.0065	0.2243	0.1277	0.3427
18528.76	0.1090	0.1507	0.0787	0.2632
18531.36	0.0650	0.2437	0.2342	0.4445
18533.96	0.0847	0.1282	0.2741	0.3619
18536.56	0.0403	0.1148	0.2112	0.2967
18539.16	0.0626	0.1747	0.1546	0.1278
18541.76	0.0689	0.1686	0.2078	0.2318
18544.36	0.1445	0.2660	0.1964	0.3741
18546.96	0.0869	0.1940	0.1769	0.2074
18549.56	0.0002	0.1505	0.2291	0.2557
18552.16	0.0288	0.2052	0.1752	0.2602
18554.76	0.0402	0.2789	0.1689	0.2975
18557.36	0.0461	0.3365	0.2197	0.2362
18559.96	0.0334	0.3819	0.1658	0.2692
18562.56	0.1819	0.2496	0.1780	0.2801
18565.16	0.1320	0.1657	0.1508	0.2527
18567.76	0.0867	0.3187	0.2892	0.3933
18570.36	0.0463	0.1555	0.1722	0.2911
18572.96	0.2002	0.3393	0.2637	0.2936
18575.56	0.0729	0.1989	0.2388	0.1375

18578.16	0.0432	0.1507	0.1856	0.3228
18580.76	0.0623	0.1136	0.0982	0.3566
18583.36	0.0713	0.1275	0.2478	0.3316
18585.96	0.0268	0.0892	0.1323	0.2667
18588.56	0.0364	0.3402	0.1723	0.3885
18591.16	0.2155	0.2243	0.3530	0.5634
18593.76	0.1092	0.1169	0.1605	0.3709
18596.36	0.0927	0.2167	0.1605	0.2547
18598.96	-0.0235	0.2486	0.1041	0.3849
18601.56	0.0440	0.1941	0.3018	0.3103
18604.16	0.0343	0.1986	0.0933	0.1929
18606.76	0.0134	0.1958	0.1411	0.2546
18609.36	0.1634	0.2766	0.2431	0.3531
18611.96	0.0094	0.0664	0.0905	0.4236
18614.56	0.1234	0.1202	0.3647	0.3340
18617.16	0.1007	0.1887	0.0955	0.2961
18619.76	0.0505	0.2099	0.2009	0.3261
18622.36	0.0558	0.1375	0.1551	0.2128
18624.96	0.0713	0.0823	0.1898	0.2329
18627.56	0.0144	0.1569	0.0796	0.2174
18630.16	0.0410	0.1205	0.2624	0.1904
18632.76	0.1228	0.2243	0.2176	0.3561
18635.36	0.0078	0.1874	0.2284	0.2769
18637.96	0.0971	0.2114	0.1997	0.2565
18640.56	0.0377	0.1943	0.0773	0.3853
18643.16	0.0606	0.1839	0.1206	0.2724
18645.76	0.0744	0.1408	0.2244	0.2867
18648.36	0.0458	0.1928	0.1953	0.3021
18650.96	0.1061	0.3767	0.2225	0.2851
18653.56	0.0633	0.1930	0.1831	0.2864
18656.16	0.0680	0.2717	0.1082	0.4006
18658.76	0.0851	0.2342	0.2616	0.2068
18661.36	0.1014	0.1764	0.1754	0.3262
18663.96	0.0795	0.1841	0.2338	0.4106
18666.56	0.0475	0.2807	0.1729	0.3660
18669.16	0.0798	0.2568	0.2674	0.2629
18671.76	0.0963	0.2269	0.3119	0.4843
18674.36	0.0356	0.2483	0.2406	0.1216
18676.96	0.0265	0.0937	0.2236	0.1270
18679.56	0.0477	0.2295	0.2666	0.2907
18682.16	0.0758	0.2289	0.2232	0.2848
18684.76	0.0481	0.1482	0.1382	0.1979
18687.36	0.0550	0.1441	0.2225	0.2626
18689.96	0.1183	0.2285	0.2384	0.3627

18692.56	0.0352	0.1867	0.1802	0.2727
18695.16	0.0716	0.1283	0.1774	0.2679
18697.76	0.0922	0.2788	0.2722	0.2817
18700.36	0.0952	0.1423	0.1749	0.2270
18702.96	0.0706	0.1381	0.3152	0.1891
18705.56	0.0855	0.1823	0.1022	0.2737
18708.16	0.0217	0.2096	0.1504	0.3456
18710.76	0.0679	0.2001	0.2095	0.3209
18713.36	0.1782	0.1546	0.3196	0.4871
18715.96	0.1512	0.1856	0.1514	0.3777
18718.56	0.0635	0.1891	0.1479	0.3016
18721.16	0.0398	0.1896	0.1626	0.2863
18723.76	0.0735	0.1271	0.1378	0.2829
18726.36	0.0963	0.2695	0.0210	0.3113
18728.96	0.1293	0.1792	0.1799	0.2570
18731.56	0.0775	0.2504	0.3085	0.3472
18734.16	0.0915	0.1375	0.1102	0.1922
18736.76	0.0145	0.1839	0.2217	0.3676
18739.36	0.0512	0.3666	0.1345	0.3902
18741.96	0.0702	0.1459	0.3120	0.3344
18744.56	0.0682	0.2471	0.0912	0.1929
18747.16	0.0751	0.1624	0.2471	0.2921
18749.76	0.0453	0.1998	0.1796	0.2462
18752.36	0.0794	0.2274	0.1700	0.3746
18754.96	0.1367	0.2435	0.1157	0.2539
18757.56	0.0865	0.2962	0.1979	0.2566
18760.16	0.0284	0.2016	0.2001	0.1621
18762.76	0.0480	0.2784	0.1303	0.2933
18765.36	0.0604	0.1962	0.1837	0.2173
18767.96	0.0631	0.0490	0.1912	0.2501
18770.56	0.0266	0.1809	0.1566	0.2549
18773.16	0.0722	0.2443	0.3068	0.4107
18775.76	0.1079	0.2472	0.3411	0.2242
18778.36	0.0449	0.1900	0.2368	0.2614
18780.96	0.0514	0.1006	0.3069	0.2948
18783.56	0.0508	0.1044	0.1188	0.2197
18786.16	0.0923	0.2708	0.2962	0.3672
18788.76	0.0360	0.2044	0.2498	0.2959
18791.36	0.1908	0.1506	0.1390	0.3678
18793.96	0.0971	0.2676	0.1726	0.4703
18796.56	0.1404	0.1204	0.2774	0.3789
18799.16	0.1353	0.1566	0.1877	0.5430
18801.76	0.0657	0.3116	0.2068	0.3553
18804.36	0.1284	0.2193	0.3447	0.4608

18806.96	0.0330	0.1643	0.2567	0.2664
18809.56	0.0750	0.0842	0.2502	0.2984
18812.16	0.0966	0.1425	0.1781	0.1463
18814.76	0.0401	0.2291	0.2656	0.3055
18817.36	0.2219	0.3338	0.2071	0.2788
18819.96	0.0725	0.1807	0.1435	0.2859
18822.56	0.0135	0.1512	0.2882	0.4215
18825.16	0.0428	0.2013	0.1663	0.3629
18827.76	0.0874	0.2728	0.2359	0.3678
18830.36	0.0744	0.1161	0.2775	0.2202
18832.96	0.0435	0.1148	0.1641	0.1828
18835.56	-0.0002	0.3139	0.1571	0.2769
18838.16	0.0690	0.1148	0.1998	0.2822
18840.76	0.1422	0.2536	0.1933	0.3025
18843.36	0.0417	0.1702	0.1182	0.2426
18845.96	0.0095	0.2188	0.2316	0.3139
18848.56	0.0372	0.2066	0.1931	0.1861
18851.16	0.0063	0.1806	0.1615	0.3837
18853.76	0.0844	0.1818	0.1736	0.4075
18856.36	0.0356	0.1838	0.1550	0.2116
18858.96	0.1215	0.1916	0.2141	0.2631
18861.56	0.0166	0.1757	0.1798	0.3699
18864.16	0.0802	0.2153	0.2396	0.2881
18866.76	0.0679	0.1487	0.0951	0.2501
18869.36	0.0658	0.1915	0.2551	0.3320
18871.96	0.0899	0.2772	0.1588	0.3749
18874.56	0.0398	0.2284	0.1032	0.2592
18877.16	0.0958	0.3007	0.2147	0.2009
18879.76	0.1280	0.1757	0.2278	0.3146
18882.36	0.0775	0.1114	0.1289	0.1344
18884.96	0.0949	0.2128	0.1645	0.2160
18887.56	0.0123	0.2691	0.2111	0.2841
18890.16	0.1291	0.2456	0.3379	0.3712
18892.76	0.1100	0.1911	0.2245	0.3227
18895.36	0.0466	0.2110	0.2205	0.3020
18897.96	0.0834	0.2115	0.2402	0.2207
18900.56	0.0045	0.1654	0.1663	0.3677
18903.16	0.1018	0.1969	0.1601	0.3198
18905.76	0.0470	0.2351	0.2672	0.2319
18908.36	0.1167	0.2706	0.2643	0.2627
18910.96	0.0327	0.0743	0.1393	0.1590
18913.56	0.0441	0.1739	0.1486	0.3622
18916.16	0.1146	0.0834	0.2131	0.2161
18918.76	0.0421	0.1960	0.1416	0.2520

18921.36	0.0198	0.1354	0.1638	0.2801
18923.96	0.0742	0.1626	0.1969	0.2772
18926.56	0.0741	0.1908	0.2372	0.3559
18929.16	0.0886	0.2156	0.2766	0.2916
18931.76	0.0936	0.2607	0.1554	0.3216
18934.36	0.1697	0.2254	0.1033	0.2790
18936.96	0.0765	0.1862	0.1755	0.1946
18939.56	0.0578	0.3034	0.2901	0.2679
18942.16	0.0781	0.1606	0.1790	0.3783
18944.76	0.0812	0.2182	0.2826	0.2754
18947.36	0.0373	0.2516	0.2438	0.3310
18949.96	0.0637	0.1669	0.2004	0.4393
18952.56	0.1247	0.2773	0.1661	0.1728
18955.16	0.1110	0.2620	0.1709	0.2196
18957.76	0.0873	0.2627	0.2390	0.2909
18960.36	0.1076	0.1998	0.2947	0.2463
18962.96	0.1257	0.2530	0.2172	0.3643
18965.56	0.1061	0.1697	0.1501	0.4462
18968.16	0.0878	0.1750	0.1593	0.2605
18970.76	0.0407	0.2721	0.2529	0.4659
18973.36	0.0969	0.2123	0.1099	0.2014
18975.96	0.0835	0.2224	0.2570	0.2641
18978.56	0.0630	0.2192	0.2273	0.2428
18981.16	0.1390	0.1928	0.1358	0.3413
18983.76	0.0691	0.1984	0.0967	0.2294
18986.36	0.0982	0.2091	0.1530	0.3081
18988.96	0.0853	0.2427	0.1745	0.2766
18991.56	0.1584	0.2239	0.2414	0.2335
18994.16	0.0439	0.1471	0.1642	0.2282
18996.76	0.0996	0.1906	0.1978	0.2744
18999.36	0.0358	0.2522	0.3195	0.4298
19001.96	0.1421	0.1732	0.1497	0.2569
19004.56	0.0695	0.2254	0.1565	0.2087
19007.16	0.0386	0.2010	0.1544	0.3067
19009.76	0.0349	0.0646	0.1478	0.2909
19012.36	0.1359	0.2234	0.2122	0.3288
19014.96	0.0945	0.1901	0.2089	0.3242
19017.56	0.0445	0.2479	0.1752	0.3433
19020.16	0.1099	0.2562	0.2096	0.1663
19022.76	0.0628	0.2606	0.2147	0.3056
19025.36	0.1203	0.2238	0.2426	0.2346
19027.96	0.0802	0.1881	0.2247	0.2825
19030.56	0.0448	0.2529	0.1743	0.3604
19033.16	0.0710	0.2324	0.2162	0.2817

19035.76	0.1281	0.2782	0.2247	0.2436
19038.36	0.0567	0.2449	0.1640	0.1404
19040.96	0.0619	0.0834	0.1678	0.3661
19043.56	0.1132	0.2222	0.2315	0.2270
19046.16	0.1607	0.1148	0.1661	0.2564
19048.76	0.1078	0.1178	0.1118	0.1491
19051.36	0.0137	0.1735	0.1632	0.2651
19053.96	0.0733	0.1803	0.2806	0.3898
19056.56	0.0771	0.1734	0.2113	0.3085
19059.16	0.1332	0.1733	0.2053	0.3577
19061.76	0.0813	0.1897	0.2015	0.2265
19064.36	0.1473	0.1848	0.2406	0.1743
19066.96	0.0489	0.2681	0.1091	0.2376
19069.56	0.0680	0.1408	0.1514	0.2368
19072.16	0.0697	0.2347	0.0851	0.2328
19074.76	0.1018	0.2713	0.2793	0.3949
19077.36	0.0986	0.1666	0.1974	0.2986
19079.96	0.0876	0.2339	0.1692	0.2988
19082.56	0.1252	0.1592	0.1941	0.2623
19085.16	0.0416	0.2305	0.1300	0.2832
19087.76	0.1064	0.1590	0.1871	0.2032
19090.36	0.1113	0.1453	0.2179	0.3332
19092.96	0.1328	0.2037	0.2642	0.2586
19095.56	0.0374	0.2914	0.1645	0.4701
19098.16	0.0937	0.2251	0.2042	0.3287
19100.76	0.0827	0.2281	0.1894	0.2347
19103.36	0.0761	0.1910	0.1885	0.1762
19105.96	0.1562	0.2316	0.1103	0.2702
19108.56	0.0348	0.1843	0.0931	0.2976
19111.16	0.0608	0.2355	0.1022	0.3085
19113.76	0.0843	0.2539	0.2617	0.3798
19116.36	0.0553	0.1106	0.1579	0.3596
19118.96	0.1573	0.1726	0.2122	0.4540
19121.56	0.0433	0.2475	0.1855	0.3121
19124.16	0.0464	0.1707	0.2392	0.3275
19126.76	0.0762	0.3177	0.3233	0.4175
19129.36	0.0129	0.1703	0.2151	0.2678
19131.96	0.0331	0.2281	0.2197	0.2717
19134.56	0.0694	0.3103	0.2683	0.2861
19137.16	0.0508	0.3669	0.2795	0.3725
19139.76	0.0793	0.2268	0.1694	0.2352
19142.36	0.1067	0.2187	0.2149	0.2948
19144.96	0.0665	0.3384	0.1824	0.3331
19147.56	0.0580	0.2363	0.2769	0.3168

19150.16	0.0858	0.2853	0.1832	0.4387
19152.76	0.1289	0.2469	0.3004	0.2600
19155.36	0.0785	0.1530	0.2426	0.2770
19157.96	0.0648	0.2192	0.3735	0.3825
19160.56	0.1071	0.1957	0.1670	0.2305
19163.16	0.0902	0.3662	0.2408	0.3112
19165.76	0.0241	0.3342	0.2156	0.4097
19168.36	0.0441	0.2338	0.2490	0.3711
19170.96	0.0543	0.2123	0.1347	0.3147
19173.56	0.1164	0.1831	0.2616	0.4149
19176.16	0.0612	0.2772	0.3079	0.3026
19178.76	0.0593	0.1424	0.0721	0.3247
19181.36	0.0932	0.1902	0.0919	0.2967
19183.96	0.0304	0.2886	0.1841	0.3403
19186.56	0.1151	0.1585	0.2049	0.2812
19189.16	0.0774	0.1796	0.1217	0.3101
19191.76	0.1088	0.1689	0.2230	0.3850
19194.36	0.0427	0.2211	0.2183	0.3017
19196.96	0.0199	0.2144	0.1728	0.3197
19199.56	0.0314	0.2413	0.1335	0.3035
19202.16	0.0786	0.1559	0.2922	0.2972
19204.76	0.1167	0.3561	0.1724	0.3760
19207.36	0.0658	0.2280	0.1299	0.2520
19209.96	0.0978	0.1514	0.2271	0.2314
19212.56	0.0918	0.2103	0.1000	0.2993
19215.16	0.1541	0.2436	0.2163	0.4201
19217.76	0.1346	0.2701	0.1972	0.2448
19220.36	0.0999	0.1805	0.1621	0.2230
19222.96	0.0967	0.1513	0.2784	0.3136
19225.56	0.0318	0.2240	0.2069	0.2377
19228.16	0.1052	0.1332	0.1352	0.3154
19230.76	0.0962	0.2083	0.1247	0.2490
19233.36	0.0026	0.2266	0.2143	0.3589
19235.96	0.1040	0.2724	0.1595	0.3561
19238.56	0.0587	0.1986	0.1608	0.2268
19241.16	0.0215	0.2122	0.2724	0.3465
19243.76	0.1031	0.1680	0.0921	0.3833
19246.36	0.0778	0.2842	0.2478	0.3702
19248.96	0.1121	0.2630	0.2093	0.3940
19251.56	0.0936	0.1872	0.1945	0.3589
19254.16	0.1044	0.1817	0.2934	0.3363
19256.76	0.0411	0.3128	0.2556	0.3262
19259.36	0.1425	0.1082	0.1791	0.2426
19261.96	0.0581	0.1391	0.1477	0.2485
19264.56	0.1069	0.2101	0.1905	0.2329
----------	--------	--------	--------	--------
19267.16	0.0501	0.1403	0.0998	0.3146
19269.76	0.0974	0.2763	0.1423	0.2240
19272.36	0.0890	0.2644	0.2749	0.2405
19274.96	0.0506	0.2066	0.2843	0.3340
19277.56	0.0811	0.2857	0.1378	0.3674
19280.16	0.0328	0.2958	0.1846	0.1708
19282.76	0.0522	0.0926	0.2402	0.2311
19285.36	0.0692	0.2591	0.2224	0.2514
19287.96	0.0441	0.2247	0.2651	0.2561
19290.56	0.0914	0.2903	0.2239	0.3478
19293.16	0.0998	0.2635	0.2075	0.3323
19295.76	0.0897	0.2402	0.1866	0.2631
19298.36	0.1940	0.2321	0.2555	0.2688
19300.96	0.0634	0.2639	0.3428	0.3698
19303.56	0.0919	0.2072	0.1646	0.3560
19306.16	0.0818	0.1788	0.1535	0.2654
19308.76	0.1088	0.1719	0.2023	0.2927
19311.36	0.0769	0.1998	0.1951	0.2112
19313.96	0.0682	0.1549	0.1986	0.2773
19316.56	0.1347	0.1320	0.2309	0.3839
19319.16	0.0874	0.2782	0.1952	0.3248
19321.76	0.0996	0.2993	0.2254	0.3520
19324.36	0.0658	0.1812	0.2080	0.3697
19326.96	0.0677	0.1946	0.2032	0.4005
19329.56	0.1287	0.2458	0.2047	0.3127
19332.16	0.0784	0.2042	0.2130	0.2608
19334.76	0.0678	0.2534	0.2223	0.3568
19337.36	0.0833	0.3042	0.2532	0.3095
19339.96	0.0840	0.1952	0.2365	0.2171
19342.56	0.1627	0.1943	0.2073	0.3848
19345.16	0.0832	0.2957	0.2494	0.3796
19347.76	0.1248	0.3176	0.2666	0.2803
19350.36	0.1258	0.2340	0.2288	0.3318
19352.96	0.0702	0.1383	0.2183	0.2885
19355.56	0.1187	0.2875	0.2351	0.3740
19358.16	0.0663	0.1887	0.1767	0.3728
19360.76	0.0703	0.1919	0.2497	0.2234
19363.36	0.0527	0.2981	0.1893	0.4656
19365.96	0.0945	0.2354	0.1364	0.3000
19368.56	0.0984	0.2262	0.2798	0.2424
19371.16	0.1192	0.1786	0.1775	0.1688
19373.76	0.0551	0.2133	0.2070	0.2989
19376.36	0.0473	0.2450	0.2387	0.3654

19378.96	0.1182	0.2168	0.2557	0.4423
19381.56	0.0737	0.1321	0.2975	0.2711
19384.16	0.0424	0.1361	0.1165	0.2017
19386.76	0.1472	0.1784	0.1651	0.3602
19389.36	0.0731	0.3149	0.1607	0.2944
19391.96	0.0740	0.1864	0.1272	0.2310
19394.56	0.1103	0.1989	0.2286	0.3842
19397.16	0.0719	0.1627	0.1643	0.3207
19399.76	0.0446	0.2384	0.1939	0.2874
19402.36	0.0394	0.1143	0.2487	0.3264
19404.96	0.0344	0.1789	0.0934	0.3476
19407.56	0.0802	0.1954	0.1162	0.2348
19410.16	0.0486	0.3380	0.1909	0.1807
19412.76	0.0841	0.1472	0.2643	0.2959
19415.36	0.0353	0.1817	0.2213	0.2238
19417.96	0.1350	0.1707	0.2039	0.3806
19420.56	0.1133	0.2343	0.1968	0.3620
19423.16	0.1019	0.1113	0.2426	0.2618
19425.76	0.0468	0.1478	0.3034	0.1915
19428.36	0.0991	0.2268	0.2443	0.2816
19430.96	0.0444	0.1622	0.1872	0.2984
19433.56	0.0808	0.1215	0.1529	0.1657
19436.16	0.0600	0.2718	0.1693	0.4312
19438.76	0.0694	0.3262	0.1528	0.2737
19441.36	0.1020	0.2851	0.2736	0.2688
19443.96	0.0878	0.1270	0.1753	0.3382
19446.56	0.0579	0.2361	0.1599	0.2184
19449.16	0.0817	0.1167	0.1762	0.3972
19451.76	0.0405	0.3078	0.1844	0.2452
19454.36	0.0605	0.1039	0.1598	0.3029
19474.20	0.0735	0.2260	0.2889	0.4073
19503.94	0.1084	0.2693	0.2062	0.2275
19533.68	0.1027	0.3187	0.2008	0.3526
19563.42	0.1252	0.2558	0.1449	0.2620
19593.16	0.0897	0.2071	0.2120	0.3198
19622.90	0.0269	0.2135	0.1414	0.3378
19652.64	0.0810	0.1563	0.3399	0.3368
19682.38	0.1131	0.2155	0.2180	0.3252
19712.12	0.0491	0.1417	0.2929	0.4234