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Abstract

A major motivation for multiple atmospheric probe measurements at Uranus is the under-
standing of dynamic processes that create and maintain spatial variation in thermal structure,
composition, and horizontal winds. But origin questions—regarding the planet’s formation
and evolution, and conditions in the protoplanetary disk—are also major science drivers for
multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere
transports heat from the interior, and measuring compositional variability in the atmosphere
is key to ultimately gaining an understanding of the bulk abundances of several heavy ele-
ments. We review the current knowledge of spatial variability in Uranus’ atmosphere, and
we outline how multiple probe exploration would advance our understanding of this variabil-
ity. The other giant planets are discussed, both to connect multiprobe exploration of those
atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration
of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Sat-
urn, and Neptune. We outline the measurements of highest value from miniature secondary
probes (which would complement more detailed investigation by a larger flagship probe),
and present the path toward overcoming current challenges and uncertainties in areas in-
cluding mission design, cost, trajectory, instrument maturity, power, and timeline.

Keywords Uranus · Atmospheric probes · Planetary atmospheres · Spatial variability ·

Giant planets · Planet formation

1 Introduction

The Galileo Probe was the first and only atmospheric entry probe to explore a giant planet
atmosphere (Young 2003). Surprises in the vertical profiles of temperature and volatile gases
retrieved by the probe led researchers to call for multiple entry probes on future missions
(Owen et al. 1997; Atreya et al. 1999; Atreya and Wong 2005; Atkinson et al. 2009). Chal-
lenges still remain to this day when trying to interpret Galileo profiles in the context of spa-
tial variability retrieved from more recent remote sensing of Jupiter (Sect. 4). In response
to the Galileo Probe discoveries, the first planetary science decadal survey (National Re-
search Council 2003, hereafter New Frontiers 2003) recommended that future probe mis-
sions to Jupiter, Uranus, and Neptune include multiple probes. Multiprobes were part of
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the second New Frontiers Announcement of Opportunity (NF2 AO), released at the end of
20031 by the National Aeronautics and Space Administration (NASA). The NF2 AO in-
cluded a mission category for “Jupiter Polar Orbiter with Probes.”

By the time of publication of the second planetary decadal survey (National Research
Council 2011, hereafter Visions and Voyages 2011), the Juno mission (Bolton et al. 2017)
had been launched, with a plan to achieve the preponderance of Jupiter Polar Orbiter with
Probes science goals using an orbiter alone. Compared to New Frontiers 2003, Visions and

Voyages 2011 considered cost more thoroughly, and was more reserved in its endorsement
of multiprobes. It discussed a New Frontiers class Saturn Probe mission, considering multi-
probes “to further enhance the science yield” but not including them in the baseline mission
concept study. A Uranus Orbiter and Probe (UOP) mission was recommended to start in the
2013–2022 decade, but with lower priority than Mars Astrobiology Explorer-Cacher and
Jupiter Europa Orbiter (Visions and Voyages 2011).

The most recent decadal survey completely avoided all mention of multiprobes to the
giant planets (National Academies of Sciences, Engineering, and Medicine 2022, hereafter
Origins, Worlds, and Life 2022). This survey recommended a UOP mission as the next high
priority Flagship mission for NASA.

Strong science drivers remain for multiple atmospheric probes to the giant planets (par-
ticularly Uranus, as discussed by Fletcher et al. 2020), despite the changing level of explicit
support from survey to survey over the past three decades. In this paper, we present the
overarching science drivers for including multiple probes on the UOP mission (Sect. 2).
We support these drivers with a detailed review of spatial variability in the atmosphere of
Uranus, covering the current state of knowledge and open questions (Sect. 3). In Sect. 4
we discuss considerations at the other giant planets which continue to justify multiprobe
exploration there and which provide examples of the more complete science at Uranus that
could be achieved using multiple probes. We list the impactful but technically modest set of
measurements desired from secondary probes (Sect. 5), and provide potential solutions to
challenges that are of concern for multiprobe missions (Sect. 6).

2 Science Drivers for Multiprobes

The decadal survey described a research strategy to advance the frontiers of planetary
science based on several Priority Science Questions, each broken up into multiple sub-
questions (Origins, Worlds, and Life 2022). The obvious question for atmospheric probe
investigations is Q7: Giant Planet Structure and Evolution, but probe measurements of heavy
elements provide important constraints for origin questions Q1: Evolution of the Protoplan-
etary Disk, and Q2: Accretion in the Outer Solar System. Table 1 lists the decadal survey
science questions that are addressed by multiprobe investigations of Uranus.

All of the questions in Table 1 would be addressed by a single atmospheric probe (Dahl
et al. 2023; Mandt et al. 2024); the fact that secondary probes also address these questions
does not imply that they can only be addressed by multiple probes. But completely solving
any of the Priority Science Questions is a very long-term goal, ultimately requiring in-situ
sampling of the atmospheres of all four giant planets, as well as atmospheric remote sensing
utilizing spectroscopy, imaging, and time-series data across the spectrum (Simon et al. 2022;
Roman 2023), observations of exoplanets and protoplanetary disks, characterization of solar

1Available as of 2024-Jan-04 on the NSPIRES website at https://nspires.nasaprs.com/external/solicitations/
summary!init.do?solId={9D033998-EF04-4F71-9983-149581288481}.

https://nspires.nasaprs.com/external/solicitations/summary!init.do?solId={9D033998-EF04-4F71-9983-149581288481}
https://nspires.nasaprs.com/external/solicitations/summary!init.do?solId={9D033998-EF04-4F71-9983-149581288481}
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Table 1 Priority Science Questions from Origins, Worlds, and Life 2022

Number Question

Q1 Evolution of the Protoplanetary Disk

Q1.1 What were the initial conditions in the solar system?

Q1.1c How did the compositions of the gas, dust, ice and organic components, and the physical
conditions vary across the protoplanetary disk?

Q1.2 How did distinct reservoirs of gas and solids form and evolve in the protoplanetary disk?

Q1.3 What processes led to the production of planetary building blocks i.e., planetesimals?

Q1.4 How and when did the nebula disperse?

Q1.4b What mechanisms dispersed the nebula?

Q2 Accretion in the Outer Solar System

Q2.1 How did the giant planets form?

Q2.2 What controlled the compositions of the material that formed the giant planets?

Q2.2c How were compositional differences between the gas giants and ice giants influenced by the
chemical and physical processing of accreted solids and gas?

Q7 Giant Planet Structure and Evolution

Q7.1 What are giant planets made of and how can this be inferred from their observable properties?

Q7.2 What determines the structure and dynamics deep inside giant planets and how does it affect
their evolution?

Q7.3 What governs the diversity of giant planet climates, circulation, and meteorology?

Q7.5 How are giant planets influenced by, and how do they interact with, their environment?

Q7.5b How is atmospheric composition influenced by ring rain, large impacts, and
micrometeoroids?a

aScience question overlaps with Q4.3e: What exogenic volatile and non-volatile materials are delivered to
planetary bodies?

system small bodies and their populations, and ongoing studies of satellites and ring systems.
The motivation for multiprobe exploration comes from the range of unique advances over
exploration using a single probe.

2.1 Origins

For some compositional measurements central to questions of planetary origins—
particularly noble gas abundances and isotope ratios—atmospheric concentrations are not
thought to vary spatially, so there is no advantage provided by a second probe (Mandt et al.
2024). But volatile elements C, O, N, and S are valuable tracers of planet formation, and
they are found in atmospheric molecules with spatially varying concentrations. Secondary
probes thus have the important role of quantifying spatial variability so as to ultimately
establish the most representative values of atmospheric composition as a tracer of planet
formation.

The bulk composition of Uranus tracks the complex and dynamic conditions in the proto-
planetary disk. Spatially, composition as a function of radial distance from the Sun evolved
over time (Fig. 1), as controlled by snow lines and condensation fronts of different volatile
species. The partitioning between components such as gas, dust, ice, and organics varied
spatially, and these components had distinct processes of transport, loss, and production.
Ultimately, any model of planet formation within the inhomogeneous protoplanetary disk
must be consistent with the current composition of Uranus. The decadal survey Strategic
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Fig. 1 Ice abundances as a function of radial distance in the model of Dodson-Robinson et al. (2009), at the
start of the calculation and after a million years. Ice lines for different molecular species moved inwards as the
disk cooled, affecting the inventory of solid materials available to form planetesimals and pebbles ultimately
accreted by the giant planets as they formed.

Research for understanding spatially variable conditions across the disk (Q1.1) called out
the importance of “in situ ... measurements of the elemental and isotopic composition of...
atmospheres of bodies formed from different nebular reservoirs (especially Uranus).”

A wide range of processes operating within the protoplanetary disk affected the formation
and evolution of gas and solid reservoirs (Q1.2, Q1.3, Q1.4). Outward migration of Uranus
may have allowed it to reach its current mass before the dispersal of the protoplanetary disk,
as in the model of Dodson-Robinson and Bodenheimer (2010), which achieves consistency
with estimates of Uranus’ carbon mass fraction by carefully considering the planet’s accre-
tion and migration history with respect to the methane ice line (Fig. 1). For gas reservoirs,
processes such as sublimation and condensation would have set elemental ratios with re-
spect to snowline locations, which evolved over time (Öberg et al. 2011; Mandt et al. 2020;
Öberg and Bergin 2021). These elemental ratios then would have been preserved in Uranus
and other modern solar system bodies. Elemental and isotopic ratios would have tracked
the evolution and eventual dispersion of the disk due to radiative processing and escape, or
photoevaporation (Guillot and Hueso 2006). For solids, the differing trapping efficiencies
in amorphous and crystalline water ices (which are stable at colder/warmer temperatures,
respectively) may affect the composition of pebbles and planetesimals accreted into the
planets, through the relative abundances of oxygen and other volatiles (Bar-Nun et al. 1987;
Hersant et al. 2004; Mousis et al. 2018), and some protostellar ice components could have
even remained pristine within large (100 µm) grains (Bergner and Ciesla 2021). Strategic
Research in the decadal survey includes measurements “especially for the ice giants” fo-
cusing on “elemental and stable isotopic compositions of refractory and volatile elements.”
Here, comparing the composition of all four giant planets is key, since it seems that Jupiter
and Saturn easily crossed the threshold for runaway gas accretion, while Uranus and Nep-
tune may have approached it only as the nebula dispersed (Helled 2023). This drives the
Strategic Research focused on “in situ measurement of the volatile elemental compositions”
of the planets.

The specific needs for probe compositional measurements at multiple locations should
be clear. The planetary C/O ratio provides an example (Cavalié et al. 2020, 2023), since
the carbon abundance is measured from atmospheric CH4, which is known to vary spatially
(Karkoschka and Tomasko 2009; Sromovsky et al. 2019a; James et al. 2022). Although
methane has been measured from remote sensing, the range of atmospheric abundances
from different analyses is large (Karkoschka and Tomasko 2009; Sromovsky et al. 2011,
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Fig. 2 The Jupiter and Saturn cases demonstrate the need for new observations of the deep spatial variation
of disequilibrium species, which can be used to constrain the bulk atmospheric abundance of oxygen. Left:
Both Saturn and Jupiter have strong latitudinal banding in their PH3 distributions (Fletcher et al. 2009). For
Jupiter there is a qualitative resemblance between the PH3 distribution at P < 1 bar and the NH3 distribution
at 10 bar (from Li et al. 2017). Right: Wang et al. (2015) found that deep eddy mixing was spatially variable
due to planetary rotation, but the pattern of variability is less complex than the observations of PH3 at shallow
levels.

2019b; Atreya et al. 2020), so in situ measurements in two locations would help to break
remote sensing degeneracies affecting both the retrieved abundances as well as the spatial
variability (Sect. 3). Atmospheric entry probes are unlikely to reach depths where oxygen
(primarily in H2O) can be directly measured, but constraints can be placed by measurement
of CO, a carrier of oxygen that is in thermochemical equilibrium only at much deeper levels.
Mixing from these deep levels must be understood in order to use CO as a marker of the
oxygen abundance, but again, spatially variable mixing in a global sense (Wang et al. 2015)
will be easier to model with compositional measurements at different locations. Spatially-
resolved in-situ measurements of PH3—which has not been detected in the troposphere
from remote sensing, in part because it may condense near 1 bar (Encrenaz et al. 1996,
2004)—would help to break degeneracies between deep transport and deep abundance that
must be understood to interpret CO data (Fig. 2).

Aside from questions about conditions across the protoplanetary disk over time, com-
positional measurements at Uranus also help us to understand the processes by which the
giant planets accreted the disk material during their formation (Q2.1, Q2.2). Because there
is no class of currently known solid material, whether icy or rocky, that follows the generally
3 times supersolar enrichment of heavy elements at Jupiter (Owen and Encrenaz 2003), it
may be possible that focusing on understanding protoplanetary disk material alone may not
answer the origins question. Materials accreted into the giant planets may have also been
processed, through interior processes such as differentiation, mixing, and chemistry. The
location of the planets may have determined the mix of materials that was accreted, since
dynamical properties of the trans-Neptunian belt suggest that Neptune and Uranus migrated
outward from a formation location closer to the Sun. Strategic Research for planetary accre-
tion process questions again called for “in situ sampling of noble gas, elemental, and isotopic
abundances.” Of particular importance for multiple probe measurements is the Strategic Re-
search objective to “understand how compositional gradients in the atmosphere and interior
of Jupiter, Saturn, Uranus, and Neptune affect the determination of bulk planetary compo-
sition based on observed atmospheric composition.” Atmospheric structure measurements
were also considered strategic for this question, since the relevant data—“physical properties
and boundary conditions (i.e., tropospheric temperatures, shapes, rotation rates) for structure
models of Uranus and Neptune via... atmospheric profile measurements”—are important for
understanding the deep structure and mixing in Uranus.
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2.2 Dynamic Processes

For many years, planetary scientists assumed that condensing vapor in convective fluid plan-
ets should be well-mixed below the cloud-forming level, and that the temperature structure
below optical depth of order unity should be adiabatic. However, our experiences on Jupiter
have challenged the validity of this “well-mixed assumption.” The atmosphere plays a fun-
damental role in a giant planet’s thermal evolution, because primordial heat must be trans-
ported by/through the atmosphere as it escapes to space. Dynamic processes engender spatial
variation, making this science theme the obvious target for multiple probes.

Understanding the mapping between observable atmospheric properties and bulk plane-
tary composition is central to both dynamical processes (Q7.1), as well as the origins topics
discussed above. Compositional variation (horizontal and vertical) results from a balance be-
tween chemical processes (thermochemistry in the deep troposphere, cloud chemistry in the
upper troposphere, and photochemistry in the stratosphere) and dynamical transport (global
circulation, diffusive mixing, dry and moist convection, storms, and vortices). Species par-
ticipating in ice and liquid cloud condensation (CH4, H2S, NH3, and H2O) are most sensitive
to these processes.

Atmospheric abundances of disequilibrium species like CO and PH3 are some of the
most challenging to interpret, but important for their potential to constrain the deep oxy-
gen abundance. These species are linked to planetary elemental abundances by the interplay
between quenched thermochemistry and mixing (Fouchet et al. 2009; Moses et al. 2020),
which may vary spatially (Wang et al. 2015, see Fig. 2). Simultaneous measurements of
multiple disequilibrium species are needed to break degeneracies between deep abundances
and deep mixing efficiency (Wang et al. 2016; Giles et al. 2017). Remote sensing measure-
ments of these species are particularly challenging. For example, CO is measured at low
concentrations, and there is a degeneracy between stratospheric and tropospheric concentra-
tions in spectroscopic retrievals, complicated by the externally-supplied oxygen from H2O.
Retrievals of PH3 reach only shallow levels in the tropospheres of Jupiter and Saturn, with
only upper limits available for Uranus and Neptune (Encrenaz et al. 1996, 2004), but at
these levels, both condensation and UV photolysis act as loss processes of PH3. Multiprobe
data provide a compelling opportunity to constrain both the concentrations of disequilibrium
species at deeper levels in the troposphere, as well as their horizontal variation on the planet.

Strategic Research in the decadal survey calls for constraining “chemical processes, ver-
tical mixing, and dynamical transport in all four giant planets by simultaneously measur-
ing multiple tracers (e.g., temperature, condensable and disequilibrium species) over varied
temporal, vertical, and horizontal scales, from... in situ measurements at Saturn, Uranus, and
Neptune.”

Observations of the spatial/temporal variability of major chemical species—water in
Jupiter, ammonia in Jupiter and Saturn, methane and H2S in Uranus and Neptune—
demonstrate that mixing is incomplete, perhaps counteracted by moist convective storm
precipitation (Guillot et al. 2020; Li et al. 2023). Measuring simultaneous vertical profiles
of temperature and gas concentrations (CH4 and H2S) that trace convective processes on
Uranus will lead to significant advances in our understanding of the convective process
itself (Q7.3), and how it relates to observable phenomena such as storm activity, banded
structures in the atmosphere (Fletcher et al. 2020), and unique polar regions. The convec-
tive process is also important due to its control over the long-term thermal evolution of the
planet (Q7.2), particularly in comparison to Neptune, whose internal luminosity exceeds
Uranus’ for reasons that are still unclear (Pearl et al. 1990; Pearl and Conrath 1991; Smith
and Gierasch 1995; Kurosaki and Ikoma 2017; Friedson and Gonzales 2017; Markham and
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Stevenson 2021). Common processes are likely at work in multiple volatile condensation
systems in the giant planet atmospheres, but for Uranus, the accessibility of the methane
condensation region (and potentially the hydrogen sulfide condensation region) means that
probe data could allow an entire condensation layer to be profiled. The results could then be
applied to improve our understanding of other layers that are more difficult (or impossible)
to observe, such as the water condensation region. Decadal survey Strategic Research in
these areas includes constraining “the rate of heat transport in Jupiter, Saturn, Uranus, and
Neptune by measuring thermal balance and vertical temperature profiles,” an activity well
suited to secondary probe experiments since temperature profiles are spatially variable. The
quest to understand how cloud-top color “ties to transport and chemistry in the atmospheres
of Saturn, Uranus, and Neptune from in situ sampling of composition” would benefit from
combined remote sensing of spatial variability, with detailed probe characterization of com-
position in multiple locations.

The composition of giant planet atmospheres is also influenced by dynamic interactions
with their environments, particularly the exogenic delivery of volatile and non-volatile ma-
terials through ring rain, large impacts, and micrometeoroids (Q7.5, see for example Luszcz-
Cook and de Pater 2013; Moses and Poppe 2017). The stratospheric abundance of species
such as CS and CO have been taken as signs of geologically recent (within the past 1000
years) large impacts on Uranus and Neptune (Cavalié et al. 2014; Moreno et al. 2017).
Probe measurements in the troposphere may not directly address this topic, due to the fact
that slower stratospheric mixing timescales allow impact-related compositional anomalies
to last much longer. But probe measurements of tropospheric species such as CO are impor-
tant for reducing model-dependent uncertainties in stratospheric abundances (Luszcz-Cook
and de Pater 2013). Improving our understanding of impact history at Uranus contributes to
the Supportive Activity in Q4 of establishing a solar system chronology “through improved
cataloging of impactor reservoirs... [and] more complete observations of present-day small
body impacts in different contexts.”

3 Spatial Variation in the Uranus Atmosphere

Spatial variation is the variation in longitude and latitude across the planet. The flagship
probe would sample the vertical variation at a single point on the planet, but to achieve any
kind of spatial sampling, multiple probes are needed.

Voyager 2 made the only spacecraft close-encounter with Uranus, measuring Uranus’
atmospheric temperature and compositional structure using radio occultation during egress.
This signal was analyzed to determine the integrated path difference caused by refractivity
variations through the atmosphere (Lindal et al. 1987). In order to invert this integrated path
difference into an atmospheric structure model, one must make assumptions. The refractivity
of a gas depends on its density, composition, and temperature.

We have a relatively small amount of data from Uranus compared to the other planets
of the solar system, but many different forms of spatial variation have been observed. This
includes variations in the temperature, composition, clouds and hazes. These are thought to
be caused by different mechanisms but it is clear that the atmosphere of this planet is highly
dynamic. This activity varies over different time scales that are still not well understood.

Due to the likely spatial variations in Uranus’ structure, as well as possible stochasticity
in both space and time, multiple entry probe sites are preferable to properly contextualize
spacecraft measurements.
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3.1 Atmospheric Structure

The Voyager 2 radio occultation provided temperature sounding to the 2.3-bar level, but
required assumptions of hydrostatic equilibrium, a fixed relative humidity of methane above
the cloud level, and a prescribed bulk mixing ratio of methane below the cloud level (Lindal
et al. 1987). For a bulk methane-mixing ratio of 2.3%, the inversion gives a temperature
of 101 K at the 2.3-bar level, but the range of temperatures spans some 16 K at this level
for methane between 0–4% by volume. Therefore, entry probe measurements offer the only
method to obtain unambiguous and non-degenerate measurements of temperature.

Multiple sources of spatial variation have been observed in the stratosphere (Roman et al.
2020; Rowe-Gurney et al. 2021). Evidence of a dynamic link between the troposphere and
stratosphere has been observed, and understanding this link is important to understanding
the planet’s temperature structure and chemical processes. Mid-infrared images from VLT-
VISIR at 13 µm (Roman et al. 2020) revealed warm mid-latitude bands of acetylene emis-
sion in 2009 and hints of zonal variation with marginally greater emission at some longi-
tudes. The observed distribution appears related and potentially coupled to the underlying
tropospheric emission six scale heights below.

A variability of up to 15% in the thermal emission at stratospheric altitudes, sensitive
to the hydrocarbon species at around the 0.1-mbar pressure level, was detected at a global
scale at Uranus in 2007 using the Spitzer Space Telescope Infrared Spectrometer (Fig. 3,
Rowe-Gurney et al. 2021). Optimal estimation retrievals show this is most likely caused by
a change in temperature. Upwelling and adiabatic expansion might explain cooling of strato-
spheric temperatures and the activity in both spectral bands show that a few discrete cloud
features exist at pressures less than 1 bar. These clouds show regions of condensation located
high above the main cloud layers and likely indicate local perturbations in the temperatures
or dynamics (from below). They could also influence the stratosphere, either by direct ad-
vection of mass, or by generating waves that propagate vertically, such as during Saturn’s
2010–2011 storm (Fletcher et al. 2012). The extraordinarily infrared-bright “beacon” in Sat-
urn’s stratosphere, associated with the great storm in its troposphere, raises the possibility
that tropospheric activity may also influence discrete stratospheric temperature anomalies
on Uranus, but the picture is complicated because no beacon-like activity was observed in
the near-infrared Keck images of Uranus, as was observed at Saturn (Sánchez-Lavega et al.
2019).

These instances of spatial variation are at different spatial scales and may originate from
diverse features and processes. Uranus’ atmospheric structure may be time-dependent due
to intermittency, as large storms may disrupt radiative-convective quasi-equilibrium (Smith
and Gierasch 1995; de Pater et al. 2015; Markham and Stevenson 2018). This time variability
also adds another dimension of complexity.

The upper tropospheric temperatures on both planets derived from Voyager 2 show cool
mid-latitudes in the 80–800 mbar range, contrasted with warm equator and poles (Flasar
et al. 1987; Conrath et al. 1998). The temperature contrasts suggest rising motion with adi-
abatic cooling at mid-latitudes, accompanied by subsidence and adiabatic warming at the
equator and poles (Fig. 4). The upwelling at low latitudes condenses into discrete methane
cloud features. Dry air would then be transported poleward and descend, thus inhibiting
methane condensation at high latitudes (Sromovsky et al. 2011). This scenario is broadly
consistent with the recent “holistic” aerosol model for Uranus and Neptune (Irwin et al.
2022), which finds that aerosols near the 1-bar level are not dominated by methane ice.
Rather, this cloud layer is a secondary effect of methane condensation, where the CH4 ice
rapidly precipitates after formation, but leaves behind a stable layer where the residence
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Fig. 3 The percentage radiance difference from Uranus’ global average of chemical species across 360°of
Longitude in 2007 from the Spitzer Space Telescope Infrared Spectrometer. Methane isotopologues, com-
plex hydrocarbon species and the hydrogen-helium continuum are plotted (points with error bars) with a
wavenumber 1 sinusoid for reference (dashed curve). Similar behavior in CH4, C2H6, and C2H2 suggests
that temperature variation rather than composition drives the radiance enhancement, while lack of longitudi-
nal variation in continuum and CH3D radiance may be due to sensitivity to levels deeper than the radiance
anomaly. Adapted from Rowe-Gurney et al. (2021).

Fig. 4 Schematic of the potential circulation in the troposphere and stratosphere of Uranus. Mid-Troposphere
Cell: Extends down to around 50 bar from the 1 bar CH4 condensation level. Retrograde winds are shown by
orange bars and circles with crosses. Prograde winds are shown by green bars and circles with dots. Upper
Cell: Layer between the tropopause and the CH4 condensation level. Tropospheric temperatures are denoted
by ‘C’ and ‘H’ for cold and hot. From Fletcher et al. (2020).

time is longer for hydrocarbon hazes mixed down from the stratosphere. Widescale up-
welling would sustain the stable layer and help to suspend haze particles, while widescale
downwelling would suppress formation of the stable layer.

3.2 Composition

Characterizing the three-dimensional distribution of atmospheric constituents on Uranus is
necessary in order to fully grasp how various chemical and physical processes are affect-
ing said composition, and how the composition relates to the large-scale motion of the at-
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Fig. 5 Global-scale variation in haze and methane concentration produces a bright polar cap over the sunlit
polar regions of Uranus (Karkoschka and Tomasko 2009; Toledo et al. 2018; Sromovsky et al. 2019b; James
et al. 2023), as seen in a series of H-band (1.6-µm) images from 1997 through 2015. The polar cap feature
swaps hemispheres before and after the equinox. Figure from Sromovsky et al. (2019b).

mosphere (Orton et al. 2015). To understand the atmospheric and temperature structures
discussed above requires characterizing the sources of opacity, and hence composition.

The Voyager 2 radio-occultation data is consistent with a layer of static stability caused
by the larger molecular weight of methane relative to hydrogen (Lindal et al. 1987; Guillot
1995a). Based on our experience with Jupiter (Li et al. 2017) and fluid dynamical arguments
(Markham et al. 2023), there is no guarantee that methane should be well-mixed below
the cloud level. Additionally, methane may follow compositional gradients arising from
meridional circulation (Sromovsky et al. 2011).

Re-analysis of the Voyager 2 radio occultation data of Uranus in more recent years, com-
bined with comparison to HST/STIS data, revealed a suspected methane depletion toward
the poles (Sromovsky et al. 2011). Both Uranus and Neptune show this polar depletion of
methane at their south poles in the NIR spectrum from Hubble (Karkoschka and Tomasko
2009, 2011). The intensity of this methane depletion is highly dependent on season and
varies on multi-year timescales near the equinox (Fig. 5). With the next Uranian equinox in
2050, a proposed flagship mission will likely coincide with the rapid evolution of this polar
cap feature.

This same pattern has also been seen in millimeter observations sensitive primarily to
hydrogen sulfide (H2S) gas (Tollefson et al. 2019; Molter et al. 2021; Akins et al. 2023).
Hydrogen sulfide and ammonia in the troposphere have been observed to have very differ-
ent polar and low latitude profiles (Fig. 6). Other UOP instruments could provide advances
in our understanding of compositional spatial variation, for example MWR (Levin et al.
2023), but this technique likewise suffers from a fundamental degeneracy between temper-
ature structure and composition (Li et al. 2020). H2S absorption features have recently been
detected in the NIR (Irwin et al. 2018, 2019b), but the latitudinal distribution has already
been shown to exhibit the same polar depletion and mid-latitude enhancement as can be seen
in methane and the hydrocarbons (Irwin et al. 2019a).

Spatially-resolved ground-based imaging of Uranus in the mid-infrared has revealed en-
hanced emission from stratospheric acetylene at mid and high latitudes compared to that at
the equator (Roman et al. 2020). These spatial differences were found to be consistent with
either a 16-K latitudinal gradient in the stratospheric temperatures or a factor of 10 gradient
in the stratospheric acetylene abundance, arguing in favor of the latter based on the vertical
motions implied by complementary upper-tropospheric observations. Probe measurements
constraining vertical transport in the troposphere at multiple locations (i.e., in polar regions
and at low latitudes) would be of value in the interpretation of this type of stratospheric
compositional anomaly.
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Fig. 6 The polar compositional anomaly at Uranus extends to tens of bars. (A.,B.) Analysis of VLA + ALMA
data by Molter et al. (2021) found a H2S-dominated troposphere at low latitudes and an NH3-dominated
troposphere in the polar regions. (C.,D.) Higher spatial resolution VLA observations were analyzed by Akins
et al. (2023), who again found differences in the H2S/NH3 ratio between polar regions and low latitudes, but
H2S/NH3 > 1 in both regions.

3.3 Convective Activity

The strongly supersolar enrichment of volatiles in Uranus (as implied by the observed CH4

enrichment) suggests complex temperature and compositional structures in the atmosphere.
Remote sensing observations can only probe down to the few-bar-level because gas and
cloud opacity and Rayleigh scattering limit the penetration any deeper (Hueso and Sánchez-
Lavega 2019). These levels are too shallow to reach the base of the H2S cloud, or to detect
clouds of NH4SH or H2O at all (Weidenschilling and Lewis 1973; Atreya and Romani 1985;
Sánchez-Lavega et al. 2004; Atreya et al. 2020).

In the gas and ice giants, above a critical abundance of the condensing species, moist
convection is inhibited by the weight of the condensables rather than favored by latent heat
release. This inhibition requires a sufficiently high abundance of condensables. In the case
of Uranus, methane is the condensable that is sufficient to inhibit convection (Guillot 1995a;
Friedson and Gonzales 2017; Leconte et al. 2017; Markham and Stevenson 2021) as warmer
parcels of gas are weighed down by methane molecules that are heavy compared to hy-
drogen and helium. This means the planet provides an extremely interesting laboratory to
understand convection in hydrogen atmospheres (Hueso et al. 2020).
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Precisely how the possible inhibition of convection affects the atmospheric temperature
structure is currently not well understood, and we must therefore be skeptical of any a priori
model for atmospheric temperature or composition structure.

Furthermore, convective inhibition may give rise to intermittent massive meteorological
events that produce a time-dependent atmospheric temperature structure (Sugiyama et al.
2014; Li and Ingersoll 2015; Markham and Stevenson 2021; Li et al. 2023). Both Uranus
and Neptune have discrete cloud activity that is both episodic and continuous. Unlike Jupiter
and Saturn, most large scale systems at the ice giants are episodic and relatively short lived,
disappearing after a few years. Some features, like the “Berg” feature at Uranus (Sromovsky
et al. 2015) are more continuous and long-lived.

Uranus shows less discrete cloud activity than Neptune, though it does have some in-
frequent storms. Uranus’ meteorology was perceived to be relatively dormant during the
Voyager 2 fly-by but has since then increased in activity as Uranus approached its northern
spring equinox in 2007, as shown most prominently at near-infrared wavelengths. Episodic
bright and dark features were observed in 2011 that were changing and moving over rela-
tively short timescales (Sromovsky et al. 2012), and bright, long-lived cloud features have
been observed multiple times (de Pater et al. 2011; Sromovsky et al. 2019a; Roman et al.
2018). One of the largest and brightest of these features was called the “Bright Northern
Complex” (Fig. 7d), which attained its peak brightness in 2005 with clouds reaching pres-
sures as low as 240 to 300 mbar (Sromovsky et al. 2007; Roman et al. 2018). In 2014 a
similarly bright feature was observed in the near-infrared and estimated to reach to similar
heights (de Pater et al. 2015). These features may be tied to vortex systems that exist in the
upper troposphere, such as the prominent dark spot observed in 2006 at depths in the 1-4 bar
pressure range (Hammel et al. 2009). This feature had bright cloud companions manifesting
at lower pressures of around 220 mbars (Sromovsky and Fry 2005), which could be evi-
dence of deep-seated features influencing the structure of the upper troposphere at certain
longitudes.

The high methane abundance above the tropopause was historically the main argument
in favor of moist convection in Neptune. The lower stratospheric methane concentration at
Uranus may thus indicate a difference between the recent convective history in the atmo-
spheres of the two planets. Evidence in favor of moist convective storms in Uranus (i.e.
clouds formed by vertical ascending motions vertically transporting heat and powered in
part by latent heat release) comes from observations of the cloud activity (Fig. 7). This is
an incomplete source of information and shows a remarkable difference with what we know
about convective storms in Jupiter and Saturn.

The physics of how planets with hydrogen atmospheres substantially enriched in
heavy, condensing elements behave is of great interest for understanding exoplanets. Sub-
Neptune/super-Earth class exoplanets, for example, may retain their heat for billions of
years due to the inhibition of convection arising from the coexistence of hydrogen and
silicate vapor (Markham et al. 2022; Misener and Schlichting 2022; Misener et al. 2023).

Because of the complex interplay between exotic meteorology, meridional circulation,
and extant evidence of latitudinal variation in methane abundance, atmospheric probe mea-
surements that can produce independent measurements of temperature and composition are
essential to properly contextualize spacecraft observations.

Mean-zonal circulation is characterized on both ice giants by a broad retrograde tropo-
spheric jet centered on the equator and prograde broad tropospheric jets in the mid-latitudes
(Sromovsky and Fry 2005; Sromovsky et al. 2019a; Karkoschka 2015). The wind fields have
none of the narrow, alternating structure (i.e. belts and zones) associated with Jupiter and
Saturn. There is a banded structure at depth (i.e. below the hazes) that has been observed
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Fig. 7 It is difficult to establish whether cloud features on Uranus are moist convective events or other phe-
nomena. (a) An extended feature observed by Voyager 2 in 1986 in Uranus’ southern hemisphere, which could
be produced by vertical upwelling in the presence of horizontal wind shear (Smith et al. 1986; Karkoschka
2015). (b) The “Berg” was a persistent feature with latitudinal drift and oscillations reminiscent of vortex be-
havior (Hammel et al. 2005; Sromovsky et al. 2019a; LeBeau et al. 2020), but no vortex rotation was directly
resolved, and dramatic brightening events were interpreted as potential convective outbursts related to the
feature (de Pater et al. 2011). (c,d) Approaching equinox, the region from 28°N to 42°N frequently generated
bright cloud features reaching 300–500 mbar (Sromovsky et al. 2007; Sromovsky and Fry 2007). (e) Cloud
activity in 2014 (de Pater et al. 2015) was interpreted as convective (Hueso et al. 2020), in part because a
long aerosol trail was reminiscent of convective plume morphology seen on other giant planets (Sayanagi
et al. 2013; Tollefson et al. 2017). But radiative transfer modeling showed that the extended trail was at a
deeper level compared to the core of the feature, arguing against sheared plume-top interpretations (Irwin
et al. 2017). (f) High-pass filtered imaging revealed banded patterns giving way above 60°N to a chaotic
pattern of isolated compact features (Sromovsky et al. 2015), drawing comparisons to possibly convective
“puffy clouds” in Saturn’s polar regions (Antuñano et al. 2018) as well as Jupiter’s high latitudes, where
cloud structure is also different north of about 45°N accompanied by increased lightning frequency indicative
of convection (Brown et al. 2018; Wong et al. 2023a). Figure from Hueso et al. (2020).

(Fig. 7f) but, unlike the two larger planets, there’s no notable connection between the winds
and the bands (Karkoschka 2015; Sromovsky et al. 2015). For Uranus, the retrograde equa-
torial zone peaks at around 50 m/s. At both northern and southern mid-latitudes, a prograde
jet blows at around 250 m/s, making it fairly symmetric between hemispheres.

Latitudinal variations in brightness, with maxima near the equator and south pole and
minima at southern mid-latitudes, were observed at Uranus by Conrath et al. (1998) and
again after reanalysis and comparison by Orton et al. (2015). This is consistent with a merid-
ional circulation, with cold air rising at mid-latitudes and subsiding at both the poles and the
equator (Fig. 4). The para-H2 fraction is at its minimum in areas of upwelling observed
in the mid-latitudes yet at a much higher value in the high-latitude areas of the northern
hemisphere that exhibited cooler temperatures Fletcher et al. (2020).

The role of moist convection and precipitation, its importance for determining the vertical
structure of temperature, condensables and density, and the interplay of moist convection
with the large-scale circulation are yet to be understood. Uranus possesses a cold atmosphere
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with abundant methane cloud activity that could be interpreted as convective, but the existing
data does not allow us to determine which of the possible storm candidates observed are
actually moist convective events. This methane condensation region is at a relatively low
optical depth, and can be probed relatively easily. But without being able to distinguish
between actively convective areas of the planet, we risk probing an anomalous region. This
risk is significantly mitigated by deploying a multiprobe strategy.

The detection of radio signals from lightning at Uranus by Voyager 2 (Zarka and Peder-
sen 1986; Aplin et al. 2020) offers a way to characterize the deep convective activity. The
Voyager observations were not localized. Measurements on an atmospheric probe could de-
tect potentially more powerful signals trapped inside the ionospheric wave guide (Sect. 5.3),
with measurements at different locations on the planet providing new constraints on the
spatial distribution of deep convective activity.

4 Secondary Probes at the Other Giant Planets

Of the giant planets, only Jupiter has been visited by an atmospheric entry probe. In the years
following the Galileo Probe experiment, interest in returning with multiple probes was high
(Sect. 1). Even with the major advances in our understanding of Jupiter’s atmosphere from
Juno, the justification for a multiprobe experiment remains strong. The state of our current
knowledge of the other giant planets also argues for multiple probes.

4.1 Jupiter

The Galileo Probe’s science objectives included thermal and compositional measurements to
at least 10 bar, with individual instruments (including the Galileo Probe Mass Spectrometer,
GPMS) designed to operate to about 20 bar (Johnson et al. 1992; Niemann et al. 1992).
The assumption of uniform mixing underpinned the rationale for the experiment, which
was designed in part to determine Jupiter’s composition, including the bulk interior water
abundance. This “well-mixed assumption” was based on theoretical models of chemical
equilibrium cloud structure (Weidenschilling and Lewis 1973; Atreya and Romani 1985;
Wong et al. 2015), but pre-Galileo signs that the assumption might not hold were given
by infrared spectroscopic data and convective theory (Bjoraker et al. 1986; Stoker 1986;
Lunine and Hunten 1987; Guillot 1995b). This is important for Uranus as well, which may
also violate the well-mixed assumption.

Probe entry into Jupiter’s atmosphere was constrained to happen close to the equator, due
to requirements on entry angle, entry velocity, and ring-plane crossing radius (D’Amario
et al. 1992). The targeted latitude of 6.6°N (planetocentric) placed the probe entry site at the
right latitude to sample a “hot spot” of enhanced 5-µm emission (Fig. 8). In general, 5-µm
hot spots owe their strong infrared brightness to simultaneous low column densities of cloud
material and volatile absorbers NH3 and H2O (Bjoraker et al. 2022), and they are formed
by an equatorially-trapped Rossby wave system (Ortiz et al. 1998; Showman and Ingersoll
1998; Showman and Dowling 2000; Friedson 2005).

Compositional profiles from the GPMS, Net Flux Radiometer (NFR), and probe-signal
attenuation showed that all the cloud-forming volatiles—NH3, H2S, and H2O—were de-
pleted at levels well beneath their equilibrium condensation levels (Niemann et al. 1996,
1998; Sromovsky et al. 1998; Folkner et al. 1998; Wong et al. 2004; Hanley et al. 2009).
Still, the community entertained the possibility that the well-mixed assumption held at other
locations on Jupiter, but that the probe’s entry into a 5-µm hot spot explained the deep
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Fig. 8 The Galileo Probe’s entry
path on December 7, 1995 (black
bar with terminal blue circle) lay
within a 5-µm hot spot, whose
morphology was interpolated
from imaging data taken in
November 1995 and January
1996. From Orton et al. (1998).

volatile depletions found there (Atreya et al. 1997; Showman and Ingersoll 1998; Friedson
2005; Li et al. 2018). The well-mixed assumption could have immediately been discarded
had there been a secondary Galileo probe at a different latitude. The validity of the assump-
tion, even outside of hot spots, was already challenged by ground-based microwave obser-
vations of Jupiter, as well as by detailed comparison of the relative ratios of the volatiles in
the probe site (de Pater et al. 2001; Wong et al. 2004, 2015; Wong 2009). But widespread
abandonment of the well-mixed assumption would not be achieved until results from the
Juno mission were unveiled.

Observations with the Juno Microwave Radiometer (MWR, Janssen et al. 2017) showed
that on a global basis, ammonia is not well mixed until somewhere in the 20–100 bar range,
a finding confirmed by spatially resolved VLA and ALMA observations (Bolton et al. 2017;
Li et al. 2017; de Pater et al. 2019b,a; Moeckel et al. 2023). Figure 9 shows the deep am-
monia depletion as retrieved in two independent analyses. Although it is now clear that dis-
agreement between probe results and the well-mixed assumption is not simply an effect of
the probe entry location in a 5-µm hot spot, the deep ammonia maps reveal that the Galileo
Probe data were affected by proximity to another localized anomaly not recognized at the
time: the high-NH3 equatorial band.

There is currently no explanation for the band of high NH3 concentration encircling
Jupiter’s equatorial region (inside 0°–8°N, planetographic). The compositional anomaly ex-
tends from less than 1 bar to as deep as 20 bar, and concentrations within this band ex-
ceed the deep well-mixed ammonia abundance at all latitudes. Concentrations within the
high-ammonia band exceed those at deeper levels below 20 bar, forming a compositional
inversion. The Galileo Probe latitude (blue bars in Fig. 9) intersected the northern edge
of the high-NH3 equatorial band, potentially explaining how the probe measured ammonia
concentrations that exceed the deep well-mixed abundance derived from microwave remote
sensing. A secondary probe measurement at a latitude well removed from the high-NH3

band would immediately reveal whether the lower ammonia abundance from microwave re-
mote sensing (compared to high ammonia from the probe data) is an effect of the equatorial
anomaly, or due to a systematic difference between probe data interpretation and microwave
data interpretation. Because the highest ammonia concentration values were also based on
microwave data—the attenuation of the probe carrier signal (Folkner et al. 1998; Hanley
et al. 2009)—it seems likely that spatial variation is the largest factor in the disagreement
between probe ammonia abundances and microwave remote sensing ammonia abundances.
Multiprobes are ideal for comprehensive investigation of spatial variation.
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Fig. 9 The Galileo Probe (blue bars) sampled Jupiter’s atmosphere at the edge of the anomalous ammonia-
rich equatorial band. Ammonia concentrations in this region inexplicably exceed the deep well-mixed am-
monia abundance. Adapted from Bolton et al. (2021), Moeckel et al. (2023).

The high-NH3 band has also been recognized as an opportunity to mitigate the degen-
eracy between temperature profile and absorber profile that affects microwave retrievals.
Li et al. (2020) argued that the temperature profile is closer to a moist adiabat within the
high-NH3 band, allowing for a retrieval of the water vapor concentration in that location
from its subtle limb-darkening effect (Janssen et al. 2005). In other regions, the tropospheric
temperature profile may be more uncertain; a range of observations and models suggest that
Jupiter’s atmosphere is stably stratified, or subadiabatic (Wong et al. 2011, and references
therein). The newest analysis of Juno MWR data by Li et al. (2022) allowed both tempera-
ture and ammonia to vary, by modeling deviations from the global mean state and including
the effects of alkali metal opacity in the lowest-frequency channel of the instrument (Bhat-
tacharya et al. 2023). This new analysis indeed finds subadiabatic temperature gradients on
Jupiter, but not in the equatorial region, where a superadiabatic gradient was found. Supera-
diabatic gradients are unstable to convection, so Li et al. (2022) invoke the presence of a
compensating water vapor gradient. The scenario is plausible, given the suggestion that the
Galileo Probe encountered a superadiabatic gradient near 10 bar that may have been stabi-
lized by a molecular weight gradient (Magalhães et al. 2002). Mysteries abound, because
the mechanism for forming and maintaining the positive ammonia gradient (concentration
increasing with altitude) at the base of the high-ammonia band is unknown, and this mech-
anism must also explain a negative water mixing ratio gradient in the same location, to sta-
bilize the superadiabaticity. Given the degeneracy between temperature and compositional
effects on microwave emission, simultaneous measurements of these quantities at multiple
locations would provide valuable reference points to improve the fidelity of remote sensing
inversions.

Although Juno is providing constraints on the water abundance (Li et al. 2020, 2022), it
seems that the Juno observations will not be sufficient to construct a map of the deep H2O
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volume mixing ratio similar to the results available for ammonia (Fig. 9). The other condens-
able volatile, H2S, has only been detected by the Galileo Probe and has not been measured
from remote sensing (Niemann et al. 1998; Wong et al. 2004). We are left with a whole suite
of questions that would be closer to their answers if simultaneous composition and temper-
ature measurements at Jupiter were available at multiple latitudes: Do all the volatiles have
the same deep depletion as ammonia, or do they follow independent profiles? How is deep
depletion created and maintained? What is the nature of the high-NH3 equatorial band? How
are moist convection and deep NH3 depletion linked (Guillot et al. 2020)? Given the higher
frequency of lightning detections in belts as compared to zones (Little et al. 1999; Brown
et al. 2018), why does the deep depletion apply at all latitudes?

4.2 Saturn

Saturn has not been visited by an atmospheric entry probe, but a Saturn probe option has
been listed in NASA New Frontiers AOs in 2016 and 2023, following the recommenda-
tion of Visions and Voyages 2011, itself informed by a presentation describing a Saturn
probe architecture that could reach 40 bar (Colaprete et al. 2009). Saturn probe concepts
have been proposed to European Space Agency (ESA) Cosmic Vision AOs (Mousis et al.
2016). Decadal survey priority science questions that are addressed by multiprobes (listed
in Table 1) are for the most part addressed equally well by Saturn data as Uranus data. A
full understanding of the origin and evolution of the giant planets will await in-situ mea-
surements at all four solar system targets. Specific multiprobe science drivers for Saturn,
presented in this section, demonstrate the type of comparative planetology that can be done
with multiprobe data from multiple planets.

The moist convective process in hydrogen atmospheres is key to understanding compo-
sition and dynamics in the diverse giant planets (Sect. 3.3). The moist convective style in
a hydrogen atmosphere may range from frequent weak convection, to episodic powerful
storm eruptions, depending on whether volatile abundances exceed a critical mixing ratio
for convective inhibition (Guillot 1995b; Sugiyama et al. 2011, 2014; Li and Ingersoll 2015;
Leconte et al. 2017; Markham and Stevenson 2021). With respect to water, Saturn would
appear to exceed the critical mixing ratio, while Jupiter may not, because lightning traces
moist convection on a continuing basis at Jupiter, while Saturn’s lightning has been detected
only within large singular storms (Dyudina et al. 2013; Sayanagi et al. 2013).

Measurements of conditions relating to water moist convection at Saturn may be directly
comparable to measurements at Uranus of properties within the methane cloud (possibly
exceeding the critical value for convective inhibition) and the H2S cloud (possibly below
the threshold for convective inhibition). Data from multiple planets and cloud layers is es-
sential for quantitatively testing our understanding of the convective process. Multiprobe
measurements are particularly important because microwave observations of Saturn show
multi-year changes in the ammonia distribution following the 2010 great storm (Fig. 10).
Compositional anomalies in Saturn’s atmosphere may be long-term remnants of great storms
dating back to the earliest known example in 1876 (Li et al. 2023). Understanding how
compositional anomalies trace past convective outbursts at Saturn—where we have a good
record of convective outbursts spanning more than a century—could be valuable for inter-
preting compositional profiles at the ice giants, where we do not have good constraints in the
pre-Voyager/pre-Hubble era on the timescale or periodicity of activity (Smith and Gierasch
1995; Friedson and Gonzales 2017; Leconte et al. 2017; Li et al. 2023). The compositional
anomalies on Saturn are localized, driving the need for probe measurements at multiple sites
to obtain a full picture of how moist convection works in hydrogen atmospheres.
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Fig. 10 Saturn’s Great Storm erupted in 2010 and produced a long-term, planetary scale belt of high radio
brightness temperature. The storm latitude of 38.2°N (Sayanagi et al. 2013) is marked in red. Adapted from
Janssen et al. (2013), de Pater et al. (2023).

Compositional and thermal profiles both at the equator and at higher latitudes would
also test the extent to which Saturn resembles Jupiter, with its high-NH3 equatorial band.
The top two panels of Fig. 10 are from Cassini RADAR observations conducted with the
spacecraft in orbit near the equatorial plane, such that interference from the ring system
makes it difficult to ascertain a resemblance to Jupiter at the equator. The bottom panel
was obtained from Earth at a high sub-observer latitude (29.1°N), so that ring artifacts can
be seen in the southern hemisphere, but the equatorial region clearly shows low brightness
temperature that may be indicative of ammonia enhancement similar to Jupiter.

4.3 Neptune

The path toward multiprobe exploration of Neptune is not currently clear, but the same
science drivers apply (Table 1). As with Uranus, Neptune seems to have a much higher
NH3/H2S ratio in the polar regions than at lower latitudes (Tollefson et al. 2021), and
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methane also varies with latitude (Karkoschka and Tomasko 2011). Although there is some
hope of measuring the methane abundance beneath the CH4 ice condensation level with en-
try probes at Uranus and Neptune, probes limited to 20 bar or so will not be able to measure
bulk atmospheric mixing ratios of H2O, NH3, and probably H2S, especially considering the
potential that some of these species may be dissolved into deep water cloud droplets. Nev-
ertheless, measurements at multiple locations will help constrain the range of compositional
variation and set lower limits on abundances.

With the next NASA flagship effort presumably focusing on Uranus, miniaturized probes
may be the only option for in-situ sampling at Neptune. The same technologies that would
enable compact secondary probes accompanying a larger primary probe would enable small
probes to ride along on potential smaller missions to Neptune or beyond, perhaps as part
of a future New Frontiers mission class. Neptune may be reachable in a cruise time of
10–15 years with nuclear propulsion, as discussed in a Chinese mission concept that lacked
an atmospheric probe (Yu et al. 2021; McCarty et al. 2022). A miniaturized probe would
be easier and less costly addition to such a mission (compared to a flagship-class probe),
enabling the mission to address many of the Table 1 science questions.

5 KeyMeasurements for Secondary Probes

Based on the discussion of science drivers for Uranus multiprobe exploration (Sect. 2), our
current knowledge of spatial variation at Uranus (Sect. 3), and our experience and knowl-
edge of the other giant planets (Sect. 4), the core measurements from secondary probes are
the atmospheric structure, vertical profiles of species whose concentrations vary horizon-
tally, and vertical wind shear. Table 2 links specific measurement goals to the themes of
planetary origins and dynamic processes (see Table 1), and it lists candidate science instru-
ments that could conduct the measurements.

Additional instrument options could make measurements of spatially variable quantities,
but these are not listed in our core discussion because their links to both origins and dynamic
process priority science questions were considered significant but not as comprehensive.
These include net flux radiometer experiments (Apéstigue et al. 2023) or nephelometers
(Banfield et al. 2005). For a mission where a miniaturized probe can be accommodated,
but there is no primary flagship-class probe, some of these additional instruments should be
considered.

5.1 Atmospheric Structure

The most crucial dual measurements for a secondary probe will be the temperature and
pressure structure. This measurement is in the scope of the “Atmospheric Structure Instru-
ment” (ASI), a package which combines individual sensors for pressure and temperature
measurements. The measurements of pressure and temperature alone provide a powerful
constraint which, when combined with remote sensing data and theory, provide far less
model-dependent results for the atmospheric convective state and compositional structure.
Such a measurement would allow for a far more powerful assessment of Uranus’ dynamical
state (Q7.2 in Origins, Worlds, and Life 2022). Providing ground-truth dramatically reduces
the degeneracies of remote sensing alone discussed in Sect. 3.

Additional ASI capabilities would be valuable because atmospheric structure is still not
fully characterized by measurements of only the two basic thermodynamic quantities of
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Table 2 Secondary/Multiprobe Measurements

Instrument Measurement goals

Theme: Origins (Q1, Q2 in Table 1)

ASIa Measure profiles of temperature and pressure (and density and sound speed if possible) to
determine the static stability.

Determine whether heat is transported by convection or radiation.

CSb Determine the maximum concentration along the descent path of volatile species such as
CH4, NH3, H2S, H2O.

Determine the concentration of disequilibrium species such as CO and PH3.

micro-TLSc
Determine the isotope ratios of C, H, O, N, and S in atmospheric molecules.

Determine the maximum concentration along the descent path of volatile species such as
CH4, NH3, H2S, H2O.

Determine the concentration of disequilibrium species such as CO and PH3.

Theme: Dynamic processes (Q7 in Table 1)

ASI
Measure profiles of temperature and pressure (and density and sound speed if possible) to
determine the static stability and mode of vertical heat transport.

Measure simultaneous profiles of temperature and composition to help break degeneracies in
spatially resolved remote sensing retrievals.

Measure the ortho/para hydrogen ratio to determine static stability and trace the mixing
history.

CS
Determine vertical variation along the descent path of volatile species such as CH4, NH3,
H2S, H2O.

Determine whether the concentration of disequilibrium species such as CO and PH3 varies
horizontally compared with other probe measurements.

micro-TLS
Determine vertical variation along the descent path of volatile species such as CH4, NH3,
H2S, H2O.

Determine whether the concentration of disequilibrium species such as CO and PH3 varies
horizontally compared with other probe measurements.

USOd Measure profile of horizontal wind speed as a function of depth.

Lightninge Detect deep moist convection via radio emissions from remote lightning.

aAtmospheric Structure Instrument. Measures ambient temperature and pressure during descent

bChemiresistive Sensor. Measures partial pressure of reactive gas species with technologies such as field-
effect transistors (FET) with doped nanomaterials (Li et al. 2003; Hannon et al. 2016; Fahad et al. 2017;
Sultana 2020)
cmicro Tunable Laser Spectrometer. Measures infrared spectral line absorption to derive relative abundances
and isotope ratios of molecules (Webster et al. 2023)
dUltra Stable Oscillator. Enables wind speed determination from measurement of carrier signal Doppler shift
eLightning detector. Antenna and receiver package for detection of signals in VLF (3–30 kHz) range

pressure and temperature. The most obvious, and likely most useful supporting measure-
ment would be of density. An independent density measurement provides two key pieces of
information: the mean molecular weight using the ideal gas equation of state, and the ver-
tical spatial structure of the atmosphere by assuming hydrostatic equilibrium. The former
can be used as a proxy for changes in composition, discussed further in Sect. 5.2. The latter
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Fig. 11 An anomaly near 1.2 bar
in the Voyager 2 radio
occultation data may include a
superadiabatic layer above the
cloud top, compensated by a
molecular weight gradient.
Uncertainties in the actual static
stability come from degeneracies
between temperature and density
in the radio occultation data.
Figure from Lindal et al. (1987).

can be used to more precisely constrain the relationship between pressure level and optical
depth for remote sensing.

Sound speed measurements would be of similar usefulness. Independent measurements
of density, pressure, and sound speed uniquely specify the Grüneisen parameter γ from the
adiabatic relationship

c2
s =

γp

ρ
, (1)

and by extension the specific heat capacity through the relationship

cp =

γ

γ − 1
R, (2)

relevant to an ideal gas. These quantities can aid in constraining the relative abundances of
ortho- and para-hydrogen (Banfield et al. 2005), relevant to atmospheric dynamics, as well
as further constrain the compositional structure. Additionally, the heat capacity of an ideal
gas atmosphere combined with gravity define the dry adiabatic lapse rate

Ŵad = −

dT

dz

∣

∣

∣

∣

ad

= −

g

cp

, (3)

allowing one to explicitly detect regions of subadiabaticity and superadiabaticity, distin-
guishing moist convective regions and regions of static stability.

For all measurements, a resolution of about 10% of the vertical scale height would be
necessary in order to resolve features such as the “Lindal blip” from Fig. 11. This region is
key to properly characterizing the atmosphere, and corresponds to the methane cloud level.
It has been interpreted as either the simple base of the cloud layer (Lindal et al. 1987), or
possibly evidence of static stability due to the inhibition of convection (Guillot 1995b). The
latter interpretation is supported by Irwin et al. (2022), who find that aerosols in this layer
are too absorbing to be methane ice itself, and may represent haze particles that remain
suspended due to weaker mixing in the stable layer.
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5.2 Composition

While a flagship-class primary probe would be responsible for a broad compositional survey
using mass spectrometry, a secondary probe has the potential to provide in-situ constraints
on latitudinal compositional gradients. Trace species, especially out-of-equilibrium species
and products of photolysis, may vary latitudinally throughout Uranus due to differences
in insolation, meridional circulation, and convection. While a detailed inventory of these
variations would be of interest, it is likely more practical to focus more narrowly on more
abundant species. Of particular interest are CH4 and CO. Methane, with its high abundance,
is expected to condense between 1 and 2 bars on Uranus. As summarized in Sect. 3, the
dynamical nature of methane moist convection is poorly understood. Due to the degeneracy
between composition and temperature gradients in many remote sensing techniques (Figs. 3,
6, 9, 11, and relevant discussions), unambiguously determining whether regions of static
stability exist will likely require ground truth.

Beyond atmospheric dynamics, a secondary probe would offer possible hints about
Uranus’ interior structure and formation history. While precision measurements of the grav-
ity field provide some constraints on the density profile of the planet’s interior, this infor-
mation alone cannot uniquely specify composition for a planetary interior likely composed
of a mixture of rock, ice, and gas (e.g., Teanby et al. 2020; Movshovitz and Fortney 2022;
Neuenschwander and Helled 2022). Measurements of species in the envelope could be di-
agnostic of composition at depth. For example, a determination of the ratio of carbon to
nitrogen in the envelope could elucidate the thermodynamic state and composition of the
envelope-mantle interface when combined with simulations or laboratory information about
the relative partition of ammonia and methane between a coexisting gas-rich and water-rich
environment. The relative abundances of species carrying C, S, and N are spatially variable
in the atmosphere, so improved knowledge of this variation from spatially distributed in-situ
sampling provides better constraints on the corresponding bulk relative abundances in the
envelope.

Because compositional variations are likely to be dominated by variations of CH4 con-
centration (particularly at p . 5 bar), measurements of density alone would already provide
a useful constraint as discussed in Sect. 5.1. However, greater precision and information
about other condensing species at greater depth requires a method to measure these con-
stituents directly. Performing this measurement with a traditional mass spectrometer on a
secondary probe would likely exceed limits on cost, volume, and mass, but alternative tech-
nologies could enable such measurements. Two examples are chemiresistive sensors and
miniaturized tunable laser spectrometers (CS and micro-TLS, see Table 2). Chemiresistive
sensors are chip-scale devices that detect gas species by changes in resistivity, often using
1D and 2D nanomaterials doped typically with metal oxides to increase sensitivity and/or
specificity. This class of sensor is used across a growing range of industrial and medical
applications, and is now being adapted to planetary exploration (Sultana 2020). A tunable
laser spectrometer has successfully been used at Mars, and research is ongoing to miniatur-
ize the technology to the point where it could potentially be carried on a small secondary
probe (Webster et al. 2023).

The highest priority targets for these composition sensors are CH4, CO, H2S, and NH3.
Each species is expected to exist in abundances on the order of a tenth of a percent or more
(e.g., Hueso and Sánchez-Lavega 2019). At the 10-bar level, H2O would be detectable if it is
close to its saturated volume mixing ratio of about 0.05%. So far above the cloud base, such
a measurement would be valuable for isotopic measurement or characterization of spatial
variability, but not as a constraint on the bulk oxygen abundance. To make useful statements
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about spatial variations and elemental ratios, measurements of condensing species should
be made to about 10% accuracy.

Although non-condensing, CO is of interest because of its relevance to constraining the
oxygen abundance of Uranus’ deep envelope, relevant to Q1.2., Q.2.2, Q7.1.; and the con-
vective contact between the methane and water cloud levels relevant to Q7.2. Understanding
the deep mixing efficiency needed to interpret CO in the context of deep bulk abundances
would be advanced by the measurement of additional disequilibrium species such as PH3.

5.3 Convective Activity

The convective state of the water cloud layer is likely to be difficult to probe directly due
to its great depth, but theoretical studies suggest lightning activity due to water storms on
Uranus may be significant (Aglyamov et al. 2023). A lightning detector onboard the pri-
mary and secondary probe could provide information about the strength, intermittency, and
spatial variability of convection at the water cloud layer. Such observations could aid in
constraining the deep water abundance, and understanding the heat flow in Uranus’ enve-
lope as well as distinguishing between a convectively active or inhibited state. Targeting
the VLF (3–30 kHz) frequency range would have the greatest value for lightning investi-
gations conducted by a secondary probe, because emissions may be strongest in this range,
and the probe’s location inside the ionospheric barrier would provide sensitivity to signals
undetectable by spacecraft (Aplin et al. 2020).

Combined atmospheric structure and compositional measurements will allow for a better
determination of the convective state of the atmosphere. An atmospheric profile that mea-
sures pressure, temperature, and volatile abundance can determine whether the atmosphere
is undergoing quasi-equilibrium convection (as observed, for example, around the Earth’s
tropics Emanuel 2007), a stably stratified structure in global radiative-convective equilib-
rium (as predicted by e.g., Leconte et al. 2017; Markham and Stevenson 2021), or if the
atmosphere is susceptible to intermittent convective events (as observed in the Earth’s mid-
latitudes). With these three variables, one can calculate the convective available potential
energy (CAPE) and convective inhibition (CIN; e.g., Sankar and Palotai 2022). A mea-
surement of vertical wind shear would likewise inform the propensity of the atmosphere to
energetic storms by analogy to terrestrial meteorology (e.g., Draxl et al. 2014). Addition-
ally, measurements of CO would provide information about the timescale of vertical motion
from the water cloud level and the oxygen abundance of the envelope, containing informa-
tion about the convective state of the atmosphere between these two dominant cloud levels
by assessing the quench location of CO at depth (perhaps with additional information from
measurements of complementary disequilibrium species such as PH3).

The notion of convective inhibition has so far been theoretically explored as a 1-
dimensional phenomenon in numerous studies (Guillot 1995b; Leconte et al. 2017; Friedson
and Gonzales 2017), and across small domains in 2- and 3-dimensional simulations (Naka-
jima et al. 2000; Sugiyama et al. 2014; Li and Ingersoll 2015; Ge et al. 2022; Leconte et al.
2024). Measuring the spatial variability of convective inhibition would serve as an invaluable
constraint on theoretical models of hydrogen convection in the presence of volatile phase
transitions. Moreover if the probe can reach sufficient depth, comparing the behavior of the
methane cloud deck to the H2S and NH4SH cloud decks would place further constraints on
the sensitivity of the behavior of convective inhibition to volatile abundance, as linear theory
predicts that while the methane cloud deck should be convectively inhibited, deeper cloud
decks such as H2S may not be (Leconte et al. 2017). Therefore a probe expected to reach
a depth of tens of bars would further benefit from instruments capable of measuring H2S
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and NH3 for the purpose of understanding atmospheric convection as well as composition at
depth as described in Sect. 5.2. Probes sampling multiple locations could assess the degree
to which convective inhibition may exist as a local vs. a global phenomenon.

6 Opportunities and Challenges for Secondary Probes

6.1 Secondary Probe Design Considerations

The scientific goal of secondary probes focuses on understanding the physical and chemical
processes that shape and maintain the ice giant atmospheres by measuring quantities that
change between entry locations. Because secondary probes target only the spatially variable
quantities, they require only a subset of the instruments that are carried in a large main
probe. Spatially variable quantities that are key to understanding the tropospheric circulation
and energy transport include the distribution of cloud-forming and disequilibrium species,
vertical stratification, and horizontal wind component. A secondary probe that focuses on
spatially variable quantities could rely on more miniaturized technologies and weigh much
less than a large probe carrying a mass spectrometer. Table 3 compares past probe designs
to highlight two points: first, across different probe designs, the instrument mass fraction
tends to be between 10–15%; and second, a mass spectrometer takes up a major portion of
the instrument mass.

The Small Next-generation Atmospheric Probe (SNAP) study (Sayanagi et al. 2020) de-
signed a 30-kg probe that focuses on spatially varying quantities. The SNAP concept’s sci-
ence objectives are to determine (1) the vertical distribution of cloud-forming molecules; (2)
thermal stratification (i.e. temperature and pressure as functions of altitude); and (3) horizon-
tal component of the wind speed as a function of altitude. The first objective was based on a
hypothetical chip-scale instrument that would measure vapor concentrations (see Sect. 6.4),
while the second and third objectives were built upon well-established instrument heritage,
namely the Atmospheric Structure Instrument (ASI) and the Ultra-Stable Oscillator (USO),
respectively. The 30-kg SNAP mass estimate includes a thermal protection system (TPS)
mass of 15 kg, which scales from the Galileo Probe TPS mass of 222 kg, considering that
SNAP has a 6.5 times smaller aeroshell surface area, 23% of the Galileo Probe total heat
load (Milos et al. 1999), twice the heat pulse duration compared to Galileo entry, and 70%
the TPS density using HEEET instead of carbon phenolic (Venkatapathy et al. 2020). The
SNAP design’s high 22% instrument mass fraction was enabled by a Li/CFx battery with
four times higher energy density than a Li-Ion battery (Krause et al. 2018). See Fig. 12 for
the schematics of the SNAP design.

6.2 Cost

Adding a second probe increases the complexity and cost of the mission; however, the SNAP
study (Sayanagi et al. 2020) demonstrated that the cost of adding a small probe that targets
spatial variabilities would be significantly less than a large planetary probe, and would in-
crease the overall mission cost by a small fraction. The cost to add one SNAP to the orbiter
is estimated to be about 80 million dollars in $FY2018. The $80M estimate includes the
cost to design and build the probe, operational costs, modification necessary to the orbiter
to mount SNAP, and a 30% reserve. While this estimate for a secondary probe cost is about
twice as much as a large instrument (e.g., $38M for the thermal IR camera in the UOP
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Fig. 12 Design schematics of SNAP, from Sayanagi et al. (2020).

study, Simon et al. 2021), it is significantly less than the $278M estimated cost of the pri-
mary probe hardware and a small fraction of the $2.8B estimated for the total mission cost
(in $FY2025). Thus, the SNAP study demonstrated that the cost of adding a second probe
to measure spatially variable quantities represents a relatively small fraction of the total
mission cost.

A secondary probe could be incorporated into the UOP mission as either a directed com-
ponent (like a facility instrument, a part of the core NASA mission design) or a competed
component (available as an option for community proposals). Including the secondary probe
as a directed component from the beginning of mission planning is advantageous because the
need for radiogenic heating (Sect. 6.5) requires significant lead time for nuclear materials
launch regulatory approval. Alternatively, the announcement of opportunity for competed
instruments on the mission could include a secondary probe within its scope (Wong et al.
2023b).

6.3 Trajectory

When the orbiter must be used to receive data transmitted from the probe, a major challenge
in any probe mission is to design the trajectories so that the orbiter is within a communica-
tion range of the probe during the probe’s atmospheric descent. While the Huygens probe
succeeded in returning data directly to Earth from the probe, such direct-to-Earth data trans-
fer is likely unrealistic for any Uranus probe due to the long communication range. Thus, a
multi-probe mission would necessarily add complexity to the orbiter trajectory in order to
deliver the probes to well-separated entry locations and receive data from the probes.

In addition, a multi-probe mission may increase the propellant required for the space-
craft’s orbit insertion maneuver because the secondary probe(s) will likely need to stay at-
tached during orbit insertion. In a single-probe mission, the probe can be released prior to
orbit insertion to reduce the mass to be delivered in orbit. For example, the Galileo orbiter
released the probe about 6 months prior to its Jupiter orbit insertion, and thus reduced the
propellant need by not carrying the probe mass during the Jupiter orbit insertion maneuver.
Recent multi-probe architecture studies (Sayanagi et al. 2020; Arora et al. 2021) illustrated
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the difficulties of releasing two or more probes before orbit insertion and subsequently plac-
ing the orbiter at a location to receive data from both probes entering separate locations.
These issues are solved if the secondary probes are released from the orbiter during orbits
subsequent to orbit insertion. Sayanagi et al. (2020) estimated that carrying a 30-kg probe
and 4 kg of mounting hardware through the Uranus orbit insertion maneuver with a 1V

of 1680 m s−1 would consume 43 kg of additional propellant. The concern of additional
propellant for orbit insertion prior to secondary probe release could be largely eliminated
if the mission uses aerocapture for orbit insertion (Girija 2023), although a higher fidelity
assessment is needed to understand the impacts of aerocapture on mission design, spacecraft
design, and concept of operations.

After the orbit insertion, any secondary probe would need to be released at most one
probe per orbit. To minimize the 1V for the probe targeting maneuver for each probe, the
probes should be released near the apoapsis from where the orbiter and the probe would
follow roughly parallel trajectories, which should place the orbiter above the probe during
the probe’s atmospheric descent to allow the orbiter to receive data from the probe. Initial
capture orbits have a period of several months, so the probe must satisfy its power and
thermal requirements for at least 30 days after being released from the orbiter, which raises
challenges for heating and power (Sect. 6.5). Nevertheless, Sayanagi et al. (2020) and Arora
et al. (2021) demonstrated that releasing secondary probes after orbit insertion is a viable
strategy to deliver the secondary probes to different locations on Uranus.

6.4 Instrument Maturity

Mature instrument options exist to address a minimum threshold set of science objectives to
understand atmospheric spatial variability. The ASI instrument suite consists of sensors that
measure ambient air temperature, pressure and probe acceleration, all of which have highly
mature component options. Horizontal wind speed is another measurement that depends on
a mature component, namely the Ultra-Stable Oscillator (USO), which is used to perform
a Doppler Wind Experiment (DWE). The ASI and USO are expected to be also part of the
primary probe and would enable comparison of wind shear at multiple locations.

The ASI includes an accelerometer used to measure the upper atmospheric structure dur-
ing the atmospheric entry phase as the entry deceleration depends on the ambient density.
The accelerometer is also used for inertial navigation to reconstruct the entry trajectory.
Once the density vs altitude is known, assuming hydrostatic balance and ideal gas law will
produce temperature and pressure as functions of altitude. Once the parachute is opened
(typically at around the 100-mbar level), the entry aeroshell can be jettisoned so that the
temperature and pressure sensors can be exposed to the environment and start taking their
measurements. Capabilities to measure density and sound speed (Sect. 5.1) would increase
the value of the ASI dataset, but these capabilities are not matured for outer planet explo-
ration. USO ensures precise maintenance of the radio wave frequency transmitted by the
probe to the orbiter so that any frequency change measured by the orbiter is dominated by
the Doppler effect and not any instrumental artifacts. In a DWE, the orbiter must also carry
an identical USO as a reference frequency source.

While measuring temperature, pressure and horizontal wind speeds at multiple locations
using ASI and USO would be sufficiently valuable to justify secondary probes, a partic-
ularly high-priority measurement that currently lacks a mature suitable instrument option
is variable concentrations of heavy-element molecules as functions of altitude. On prior
atmospheric in-situ missions to Venus, Mars, Jupiter, and Titan, atmospheric composition
measurements were carried out by a mass spectrometer, and Tunable Laser Spectrometers
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(TLS) have also been flown to Mars. However, a mass spectrometer tends to be a massive
large instrument that tends to drive a probe design as illustrated in Sect. 6.1 and Table 3.
TLS is also currently a large instrument. For example, the Sample Analysis at Mars (SAM)
instrument suite on the Mars Science Laboratory (Mahaffy et al. 2012) combines a mass
spectrometer and a TLS and weighs 40 kg (although this includes a Sample Manipulation
System that would not be useful at Uranus). The objective to determine the spatial variability
in their concentrations does not require all the capabilities of a large, heavy, mass spectrom-
eter and TLS; in particular, a secondary probe does not need to measure the abundance of
noble gases and isotopic ratios because they are expected to be spatially homogeneous (al-
though xenon could be an exception if it condenses at Uranus, see Zahnle 2023). Thus, an
instrument that exploits the chemical properties of the vapor molecules may offer the needed
capability to measure the vapor concentrations. On the other hand, progress in miniaturizing
TLS instrumentation (Webster et al. 2023) could enable a micro-TLS to perform composi-
tional measurements aboard a miniaturized probe, since TLS data can be used to determine
gas concentrations as well as isotope ratios.

Multiple efforts are ongoing to develop instruments that would enable vapor concentra-
tion measurements in Ice Giant atmospheres. Sensing mechanisms include functionalized
field-effect transistors and chemiresistive sensors (Li et al. 2003; Sultana 2020; Ambrozik
et al. 2020; Yaqoob and Younis 2021), microelectromechanical system (MEMS; Ba Hash-
wan et al. 2023), and quartz crystal microbalances (Alanazi et al. 2023). Some of these
sensors have been space qualified and operated in space (Meyyappan 2015; Dawson et al.
2020); however, these technologies have not been demonstrated for conditions expected in
giant planet atmospheres. Substantial development investment is needed to miniaturize sen-
sors capable of satisfying the size and performance requirements for in situ exploration of
Uranus. Further developments are also needed in designing inlet and sample processing sys-
tem to ensure that the sensors are able to operate in the thermal conditions with potential
presence of photochemical haze and condensed cloud droplets that may affect sensor oper-
ations (Wong 2017).

6.5 Power, Heating, and Regulatory Requirements

Similar to larger probes, electrical power for secondary probe would be provided by onboard
batteries. Due to the smaller overall mass of a secondary probe, the benefit of selecting a bat-
tery with higher energy density is relatively greater than for larger probes. Multiple battery
technologies are available for future planetary science missions. Among them, lithium/ car-
bon monofluoride (Li/CFx ) batteries may offer 640–700 Wh/kg energy density in a D-cell
form factor (Surampudi et al. 2017; Krause et al. 2018), with a theoretical energy density
of 2,596 Wh/kg (Bock et al. 2012). The typical lithium ion battery energy density is 145
Wh/kg. Table 3 lists different battery technologies assumed for different outer planets probe
designs, and demonstrates that, for SNAP, incorporating Li/CFx batteries allowed increas-
ing the instrument mass fraction. The Europa Lander study also specified Li/CFx batteries
and called for development, since this technology does not have flight heritage (Hand et al.
2022).

Challenges in thermal management arise from the long dormant period each probe must
withstand after being released from the orbiter, which is expected to last 30 days or longer.
Without heating, the probe temperature would fall toward the radiative equilibrium tem-
perature of ∼80 K around Uranus, which is much lower than the survival temperature of
electronic components. Even though the heating power need is expected to be in the range
of several watts (for SNAP, the estimated need is 3 W; Sayanagi et al. 2020), this represents
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a prohibitive amount of energy over a >30-day period. Thus, the only viable technology to
satisfy this survival heating need is radioisotope heater units (RHUs), which utilize the ra-
dioactive decay heat release from plutonium-238 (NASA 2016). In principle, using RHUs in
a mission incurs the regulatory nuclear launch safety fee (NASA 2022); however, any Flag-
ship mission to Uranus is expected to incur the nuclear launch fee because it would carry a
radioisotope thermoelectric generator (RTG) to provide electric power for the orbiter dur-
ing the entire course of the mission. Incorporating RHUs in any secondary probe therefore
will not represent additional cost in terms of nuclear launch safety fee, but schedule pres-
sure must be considered (Zide et al. 2022) because payload nuclear components (including
secondary probe RHUs) must be included in all design reviews required for nuclear launch
safety approval.

7 Conclusion

Multiple probe exploration of the giant planets is a concept that has enjoyed broad support
from NASA and the science community since the Galileo Probe experiment was completed.
As decadal surveys have grown more cost-conscious over the years, their explicit endorse-
ment of multiprobes has waned, but the key science questions motivating in-situ exploration
of Uranus continue to provide compelling justification for multiple probes.

Fletcher et al. (2020) provided justifications for targeting an atmospheric probe at Uranus
into three locations: equatorial, mid-latitude, and polar domains. Given the desire to under-
stand seasonal variation on Uranus, measurements in both north and south polar regions
would be of immense value, justifying up to four atmospheric probe locations in total. Sec-
ondary probes would measure spatially-variable properties in these locations, complement-
ing more detailed measurements in one of the locations conducted by a flagship-class probe
with mass spectrometer and a more comprehensive instrument suite (Mandt et al. 2024).
Although the focus of this specific paper is the science motivation for secondary probes at
Uranus, we agree with the finding of Origins, Worlds, and Life 2022 that a mission with
even a single probe would deliver uniquely powerful science return compared to an orbiter
mission with only remote measurements.

Spatial variation in temperature has been observed in the stratosphere of Uranus (Rowe-
Gurney et al. 2021), and multiple probes would be ideal for expanding our insight into how
temperature may vary in the troposphere. In this deeper layer, heat transport by convection
vs. radiation, measurable by atmospheric probes, could distinguish between very different
evolutionary pathways and histories. Composition varies both spatially and temporally, and
a more quantitative understanding would be enabled by multiprobe measurements capable of
breaking degeneracies that affect remote sensing data from both spacecraft and observatories
at the Earth. For example, spectroscopic retrievals of ammonia and methane concentrations
are commonly affected by degeneracies with aerosol properties or with temperature vari-
ation. In situ measurements of composition and temperature can therefore provide anchor
points for the modeling and interpretation of maps of spatial variation derived from remote
sensing (Mandt et al. 2024). Although a single probe would effectively break degeneracies
in remote sensing retrievals at the specific time and location of the probe entry, data from
multiple probes would be a major advance. Multiprobe data would constrain physical mod-
els that could explain how dynamic processes differently affect distributions of temperature,
composition, and aerosols throughout the atmosphere (Q7.2 and Q7.3 in Table 1). Under-
standing dynamic processes is ultimately necessary to constrain atmospheric abundances
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and thus planetary origins (Q7.1, Q1, Q2 in Table 1). We advocate that atmospheric struc-
ture measurements be expanded beyond only temperature and pressure to include density
and sound speed, especially at Uranus where a means of quantifying the hydrogen ortho/para
ratio would constrain both static stability and convective history.

There are no insurmountable barriers to multiprobe exploration of Uranus as part of the
anticipated NASA flagship mission. The SNAP study (Sayanagi et al. 2020) demonstrated
the feasibility a secondary probe on a flagship mission. The estimated $80M cost of a sec-
ondary probe is significant, but on the same order as a core facility instrument on the orbiter.
A secondary probe could be included as a directed component of the mission, or the call
for competed instruments could include a secondary probe within its scope. International
collaboration—with one or several probes or probe components provided by another space
agency—could be another pathway for achieving multiprobe exploration of Uranus.

Probe delivery to a separate location from the main flagship probe would require release
from the orbiter on a separate orbit, which was shown to be feasible in the SNAP study.
The situation would be further improved if aerocapture were included in the UOP mission
design. Instrument maturity level for ASI and USO is high, although fully miniaturized
versions of these components have not yet been flown on outer solar system atmospheric
probes. The active development of miniaturized composition sensors, using chemiresistive
or tunable laser spectroscopic approaches, must continue to be supported. Batteries with
high energy density will enable a better science payload fraction. RHUs will be required for
survival heating up to descent time, which argues for early integration of secondary probes
into the overall mission design to ensure timely launch review and approval.

The first multiprobe mission to an outer planet atmosphere will represent a major increase
in technical and scientific achievement in solar system exploration, compared to the single-
probe Galileo exploration of Jupiter and Huygens exploration of Titan.
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