3 hardware lectures

- receivers SIS mixers, amplifiers, cryogenics, dewars, calibration; followed by antenna tour; later, take apart a 6-m dewar
- 2. correlator (James Lamb)
- Iocal oscillator system Gunn oscillator, phaselock chain, linelength system, lobe rotation, sideband separation

receivers

- radiation collected by the telescope is focused onto a 'feed horn' that couples it into a waveguide
- the receiver amplifies and converts some frequency range of the incoming signals to a lower frequency 'IF' (intermediate frequency) that is sent back to the control building

suppose we observed a 10 Jy calibrator with CARMA for 1 year, 24 hrs/day – how much energy would we collect?

$$E = \frac{1}{2} S \eta A \Delta v t$$

• S = source flux density = 10 Jy = 10 x 10^{-26} watts m⁻² Hz⁻¹

- the factor of $\frac{1}{2}$ arises because we are sensitive to 1 polarization
- η = aperture efficiency ~ 0.60
- A = geometrical collecting area = $6 \times 85 \text{ m}^2 + 9 \times 29 \text{ m}^2 = 771 \text{ m}^2$
- Δv = instantaneous bandwidth = 2 x 4.0 GHz = 8 x 10⁹ Hz
- t = 1 year = 3 x 10⁷ sec

Result: $E = 5.6 \times 10^{-6}$ joules

1 calorie = 4.2 joules heats 1 cm³ (20 drops?) of water by 1 C

→ must observe for 38000 years to heat 1 drop of water by 1 C

detectors for radio astronomy

- 1. bolometers
 - absorbed photon increases temperature, changes resistance
 - phase of incoming signal is lost unsuitable for aperture synthesis
 - operate at ~0.3 K
- 2. HEMT (High Electron Mobility Transistor) amplifiers
 - preferred below 50 GHz, good up to 115 GHz
 - operate at ~20 K
- 3. SIS mixers
 - mixes incoming signal with local oscillator to convert it to a lower frequency where it is amplified (by HEMT)
 - preferred for 100+ GHz
 - operate at ~4 K

High Electron Mobility Transistor (HEMT) amplifier

- gate voltage controls width of channel, modulates current from source to drain
- to operate at 100 GHz, charge carriers must transit under the gate in ~ 1/10 x 1/100 GHz ~ 10⁻¹² sec
- must travel 0.1 um in 10⁻¹² sec ~ 100 km s⁻¹

mixers are used to convert signals to a lower frequency

- 'mix' RF (radio frequency) signal with a strong LO (local oscillator) to produce an IF (intermediate frequency)
- e.g., 102 GHz RF + 100 GHz LO -> 2 GHz IF (also, 98 GHz RF + 100 GHz LO -> 2 GHz IF)
- can be thought of as 'sampling' the incoming signal; local oscillator is the clock

mixer has a nonlinear current-voltage relation

• linear device (superposition principle):

$$\omega_1, \omega_2 \rightarrow \lim_{device} \rightarrow \omega_1, \omega_2$$

- nonlinear device: $\omega_1, \omega_2 \rightarrow \boxed{\begin{array}{c} \text{nonlinear} \\ \text{device} \end{array}} \rightarrow \omega_1, \omega_2, \omega_1 + \omega_{2,} \omega_1 - \omega_2, 2\omega_1 + \omega_2, \dots$
- diode is an example of a nonlinear device: $I = I_0(e^{\alpha V} - 1) \sim I_0(\alpha V + \frac{1}{2} \alpha^2 V^2 + ..)$ $V = A \cos \omega_1 t + B \cos \omega_2 t$ $V^2 = A^2 \cos^2 \omega_1 t + B^2 \cos^2 \omega_2 t + 2AB \cos \omega_1 t \cos \omega_2 t + ...$ $= ... + AB \cos(\omega_1 + \omega_2)t + AB \cos(\omega_1 - \omega_2)t + ...$
- note: amplitude at frequency $\omega_1 \omega_2$ is linearly related to amplitudes A and B

waveforms

DSB (double sideband) downconversion

- upper and lower sidebands are folded together in the I.F. e.g., HCN at 88.6 and CS at 98.0 both appear at 4.7 GHz in the I.F. – but can be separated by phase switching (lecture 3)
- LO tunable from 85-114 GHz (3mm) and 215-270 GHz (1mm)
- SZA 3mm receivers are different USB only

SIS (Superconductor-Insulator-Superconductor) tunnel junctions used as mixers at mm wavelengths

SIS devices have extremely sharp nonlinearity

cryocooler and dewar

closed cycle 4 K cryocoolers

- similar to Carnot cycle:
 - compress helium to ~280 psi, air-cool to remove heat of compression
 - in the 'cold head,' expand to ~60 psi to provide refrigeration
- except: use heat exchangers (bronze screens, Pb spheres, Er₃Ni spheres) in the cold head to reduce the pressure difference that is needed
- above the critical pressure of ~30 psi, 4 K helium does not separate into gas and liquid phases – it is a dense fluid

cryocoolers - practical details

- on 6-m antennas, must slow down the cold head cycle to get to lowest temperatures; 72 rpm during cooldown to 5 K, 30 rpm to operate at 3 to 3.8 K
- contaminants in helium gas stream ultimately freeze out at 4 K, lead to erratic operation; 5 minute defrost cycle can help; every 6-12 months warm to room temperature, flush with fresh helium
- oil is injected into gas stream in the compressors to absorb heat of compression; overheating most likely in extremely cold weather when oil gets viscous

dewar design

to minimize heat load on cryocooler:

- evacuate to minimize gas conduction; pressure < 10⁻⁹ atm, ~ a few x 10¹⁰ cm⁻³
- use low thermal conductivity materials; a copper wire 24" long x .022" diam would conduct 50 mW from room temp to 4 K
- copper shields reduce loading from room temperature radiation (300 mW/sq in for a 300 K black body)

local oscillators

- LO = microwave signal on each receiver that 'mixes' with incoming radio signal
- LO frequency is tunable, determines what spectral chunks are sent back to the control building on the IF
- LOs must be perfectly synchronized on all telescopes – phaselocked to reference signals sent from the lab (a servo system; subject of hardware lecture 3)
- beamsplitters combine signal and LO

fiberoptic links

- signals between antenna and control building travel over glass fibers in underground conduits
- transmitter: intensity-modulated IR laser
- receiver: photodiode measures laser intensity
- 8 fibers per antenna: 2 Ethernet, 2 IF, 4 phaselock reference signals
- reconnect fibers in antenna base and in control building each time an antenna is moved

receiver calibration

 black body emitters are the most convenient calibration sources (K instead of ergs cm⁻² s⁻¹ Hz⁻¹); power collected in 1 polarization by horn with aperture D is:

$$P_{in} = \frac{1}{2}B A \Delta \Omega \Delta \upsilon = \frac{1}{2}\frac{2kT}{\lambda^2}D^2\frac{\lambda^2}{D^2}\Delta \upsilon = kT\Delta \upsilon$$

• T_{rcvr} is the noise generated by the receiver, referred to the input of the receiver

receiver calibration

- in the lab, use black body emitters at room temperature (295 K) and immersed in LN₂ (77K)
- solve for gain G and receiver temperature Trcvr
- Tsys = Tin + Trcvr is the total noise power from the receiver, calibrated as an input temperature

calibration for astronomical objects

- ideally, calibrate with loads outside the atmosphere
- unfurl a 200 x 200 m load from the space station?
- nature provides $T_1 = CMB$
- effective temperature of T₂ at the input to the receiver:

$$T_2' = T_2 e^{-\tau} + T_{atm} (1 - e^{-\tau})$$

so if $T_2 = T_{amb}$, it doesn't matter where we position the load along the line of sight – it can be right in front of the receiver!

chopper wheel calibration

more notes on chopper wheel cal

- effectively, we are including the atmosphere as part of the receiver: hence, we can't tell the difference between a poor receiver and a rainy day – both lead to high Tsys (but we have 15 antennas, so spotting bad rcvr is easy)
- as long as Tamb ≈ Tatm, the effective calibration temperature Tcal depends only weakly on the details of the atmospheric model
- receivers are sensitive to 2 bands (LSB and USB); normally Tsys(LSB) = Tsys(USB) = 2 × Tsys(DSB)
- reference: Ulich & Haas 1976

fluctuations in Tsys

- remember that T_{sys} is the AVERAGE noise power
- fluctuations in Tsys:

 so fluctuations are greater on ambient load or the Sun than on cold sky

