
Problem Set 1 Solution

AY 7B

Problem 1

(a) R is stationary and S is moving away at v = βcs. Image two pulses: one emitted at
time t1 and when S is at position x1, and another emitted at time t2 and when S is at
position x2.

The first pulse is received by R at time:

P1 = t1 + x1/cs, (1)

and the second pulse is received at time:

P2 = t2 + x2/cs, (2)

Now, the time between the two pulses as seen by R is:

∆t′ = P2 − P1 = (t2 − t1) +
(x2 − x1)

cs
. (3)

Now, (t2 − t1) is the time interval between emission, τ0 = 1
ν0

. We can solve for (x2 − x1)
by noting that this is the distance S covers during a time τ0. Therefore,

(x2 − x1) = τ0βcs =
1

ν0
βcs. (4)

Plugging this back to ∆t′ gives us:

∆t′ =
1

ν0
(1 + β). (5)

We also know that ∆t′ = 1
ν′

, where ν ′ is the frequency of the sound wave measured by
the receiver. Using our previous equation for ∆t′, we find the relationship between ν ′

and ν0 to be:
ν ′

ν0
=

1

1 + β
(6)

(b) Now, S is stationary and R is moving (with respect to the medium). An important
feature of waves that propagates through a medium (e.g. sound waves in air), is that
the speed of propagation always refers to the speed in the medium (i.e. an observer at
rest with the air will measure a speed of sound of cs).
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Now, when the observer is moving with respect to the medium, the speed of sound in the
medium cs will be added with the relative speed between the medium and the observer
(in this case vnet = cs − βcs). We can now form the same two-pulse picture as we did in
part (a).

The first pulse is received by R at time:

P1 = t1 + x1/(cs − βcs), (7)

and the second pulse is received at time:

P2 = t2 + x2/(cs − βcs). (8)

The time between the two pulses as seen by R is:

∆t′ = P2 − P1 = (t2 − t1) +
(x2 − x1)

cs − βcs
. (9)

As per part (a), plug in 1/ν0 for (t2 − t1) and βcs/ν0 for (x2 − x1) to get:

∆t′ =
1

ν0

(

1 +
β

1 − β

)

=
1

ν0

(

1

1 − β

)

. (10)

Again, ∆t′ = 1/ν ′, so we can invert the equation to get:

ν ′

ν0
= (1 − β) (11)

Problem 2: C&O 4.5

Throughout this problem, γ−1 =
√

1 − u2/c2 = 0.6.

(a) ∆tP = (60 m)/(0.8c) = 0.250 microseconds.

(b) The rider sees a train at rest of length:

 Lrest =
Lmoving

√

1 − u2/c2
=

60 m

0.6
= 100 m. (12)

(c) The rider sees a moving platform of the length:

 Lmoving = Lrest

√

1 − u2/c2 = (60 m)(0.6) = 36 m. (13)

(d) ∆tT = (100 m)/(0.8c) = 0.417 microseconds.

(e) In the T frame, the train is 100 m long and the platform is 36 m long. The platform is
moving with velocity 0.8c towards the train. The time T measures for the platform to
travel the extra 64 m is (64 m)/(0.8c) = 0.267 microseconds
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Problem 3: C&O 4.6

Throughout this problem, γ−1 =
√

1 − u2/c2 = 0.6.

(a) The two events are the starship leaving Earth and arriving at α Centauri. According to
an observer on Earth, these events occur at different locations, so the time measured by
a clock on Earth is:

(∆t)moving =
4ly

0.8c
= 5 yr. (14)

(b) The starship pilot is at rest relative to the two events; they both occur just outside the
door of the starship. According to the pilot, the trip takes:

(∆t)rest = (∆t)moving

√

1 − u2/c2 = 3 yr. (15)

(c) Using Lrest = 4 ly, the distance measured by the starship pilot may be found from’:

Lmoving = Lrest

√

1 − u2/c2 = 2.4 yr. (16)

(d) According to Eq. (4.31) with ∆trest = 6 months and θ = 0, the time interval between
receiving the signals aboard the starship is:

∆tobs =
∆trest(1 + u/c)
√

1 − u2/c2
= 18 months. (17)

(e) The same as part (d).

(f) From the relativistic Doppler shift,

λobs = λrest

√

1 + vr/c

1 − vr/c
= 45 cm. (18)

Problem 4: C&O 4.11, part (a)

This problem involves a lot of algebra, so bear with me: Measured in frame S ′, the spacetime
interval is:

(∆s′)2 = (c∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2. (19)

From the Lorentz transform equations:

(∆s′)2 =

[

c(∆t− u∆x/c2)
√

1 − u2/c2

]2

−

[

∆x− u∆t
√

1 − u2/c2

]2

− (∆y)2 − (∆z)2. (20)

Performing some algebra, we can reduce this equation to:
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(∆s′)2 =
(c2 − u2)(∆t)2

1 − u2/c2
+

(u2/c2 − 1)(∆x)2

1 − u2/c2
− (∆y)2 − (∆z)2. (21)

This can be further reduced to:

(∆s′)2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 = (∆s)2. (22)

Problem 5: C&O 4.13

Throughout this problem, S is the Earth frame and S ′ the starship A’s frame. The velocity
between the two frames is therefore vA = u = 0.8c. From the frame of the Earth, the velocity
of starship B is vB = −0.6c. We can now use the Einstein velocity addition formula to find
the velocity of starship B as measured from starship A:

v′B =
vB − u

1 − uvB/c2
= −0.946c. (23)

The velocity of starship A as measured from starship B is just the opposite of this,
+0.946c.

Problem 6: C&O 17.6

(a) The time a photon takes to cross a frame of z-length dz is t = dz/c. In this time, the
frame has fallen a distance of:

1

2
g(r)t2, (24)

towards the Sun, with r being the distance between the frame and the Sun, and g(r) =
GM⊙/r2 is the local gravitational acceleration. The distance perpendicular to the z-axis
travelled by the frame during this time is:

1

2
g(r)t2 cos α. (25)

Now, refer to Fig. 17.10 and replace l by dz, φ by dφ, and 1
2
gt2 by 1

2
gt2 cos α, resulting

in:
[

1
2
g(r)t2 cos α

]

dz
=

[

dz
2 cos(dφ/2)

]

OD
. (26)

Since dφ is small, we can set cos(dφ/2) ∼ 1 and OD ∼ rc, the radius of curvature of the
photon’s path. Thus, in radians:

dφ =
dz

rc
=

g(r)t2 cos α

dz
=

GM⊙

r2

(

dz

c

)2
cos α

dz
. (27)
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Defining g0 = GM⊙/r20, where r0 = r cos α is the distance of closest approach, we
obtain:

dφ =
g0 (cos α)3

c2
dz. (28)

(b) To find the total angular deflection, φ, we integrate dφ from α = −π/2 + π/2. Using
z = r0 tan α, we have dx = r0(sec α)2dα. Thus:

φ =

∫

∞

−∞

g0
(cos α)3

c2
dz =

goro
c2

∫ π/2

−π/2

cos α dα =
2g0r0
c2

=
2GM⊙

r0c2
. (29)

Assuming the photon just grazes the Sun’s surface, we set r0 = R⊙ and find:

φ =
2GM⊙

R⊙c2
= 4.24 × 10−6 rad = 0.875′′. (30)

(c) The answer we got is half the correct value of 1.75”. In general, the correct result for
the angular deflection of a photon that passes within a distance r0 of a spherical mass
M is:

φ =
4GM

r0c2
, (31)

twice the previous result. Our derivation in parts (a) and (b) included only the effect
of the curvature of space, and not the equal contribution of time running more slowly
in the curved spacetime near the Sun. The photon spends more time near the Sun (as
measured by a distant observer), and so suffers a larger angular deflection.

Problem 7: C&O 17.7

(a) Elsewhere: (∆s)2 = (c∆t)2 − (∆l)2 < 0.

(b) Future lightcone: (∆s)2 > 0 and t > 0.

(c) Future lightcone: (∆s)2 > 0 and t > 0.

(d) Elsewhere: (∆s)2 < 0.

(e) Past lightcone: (∆s)2 > 0 and t < 0.

(f) Future lightcone: (∆s)2 > 0 and t > 0.

(g) Elsewhere: (∆s)2 < 0.

(h) Elsewhere: (∆s)2 < 0.
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