
Problem Set 2 Solutions

AY 7b

Problem 1

An atom has rest mass M0, and is initially at rest. It emits a photon and thus recoils in the opposite direction
at speed v. After the emission of the photon, the atom has a new rest mass M ′0.
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(a) Using the above picture as a guide, we use conservation of energy and momentum to give us two
independent equations which we may solve for β = v/c and the ratio M ′0/M0.

Conservation of energy gives us:
M0c

2 = γM ′0c
2 +Q (1)

and conservation of momentum gives us:

pnet = 0 = γM ′0v −
Q

c
(2)

or
M ′0 =

Q

γvc
(3)

Using equation (2), we see that we can divide both sides by M0c and rewrite it as:

γ
M ′0
M0

v

c
− Q

M0c2
= 0 (4)

Defining q = Q/(M0c
2), we get

q = γβ
M ′0
M0

(5)

Now plug equation (3) into equation (1), to get:
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β =
q

1− q
(6)

Now using equation (6), we see that

γ =
1√

1− β2

=
1√

1− q2

(1−q)2

=
1− q√

(1− q)2 − q2

γ =
1− q√
1− 2q

(7)

Plugging equations (6) and (7) into equation (5), we see

q =
M ′0
M0

(
1− q√
1− 2q

)
q

1− q

M ′0
M0

=
√

1− 2q (8)

(b) What if we were now able to ignore conservation of momentum, and the atom had not recoiled? It would
instead emit a photon of energy Q0 = (M0 −M ′0)c2.
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To find Q/Q0, in terms of q, we write

Q0 = M0c
2

(
1− M ′0

M0

)
Q0

M0c2
= 1− M ′0

M0

Since q = Q/(M0c
2) and M ′0/M0 =

√
1− 2q, we have

Q

Q0
=

q

1−
√

1− 2q
(9)

Problem 2: C&O 17.16

(a) To find the coordinate speed of light in the φ direction (for light in a Schwarzschild metric), we use the
Schwarzschild metric (Eq. 17.22), which is

ds2 =
(
cdt
√

1− 2GM/rc2
)2

−

(
dr√

1− 2GM/rc2

)2

− (rdθ)2 − (r sin θdφ)2 (10)
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Light follows null spacetime intervals, so ds = 0. To see what the φ component of the speed of light,
consider the special case of dr = dθ = 0 and θ = 90◦, which simplifies the metric for this situation to

0 =
(
cdt
√

1− 2GM/rc2
)2

− (rdφ)2 (11)

So we see that

vφ = rω = r
dφ

dt
= c

√
1− 2GM

rc2
(12)

(b) Because equation (17.26), v =
√
GM/r, does not depend on the mass of the particle orbiting the

Schwarzschild black hole, we can directly use this equation in the limit that m → 0, and use it for
photons. Since this gives the particle speed for a purely circular orbit, vφ, we equate this with the result
from part (a) to find a photon’s circular orbit radius around the black hole:√

GM

r
= c

√
1− 2GM

rc2

r =
3GM
c2

= 1.5RS (13)

using the Schwarzschild radius RS = 2GM/c2.

(c) Using the result from parts (a) and (b), we know that for the orbit at r = 1.5RS (this circular orbit)
vφ = c

√
1− 2GM/rc2, so

vφ = r
dφ

dt
= c

√
1− 2GM

c2
c2

3GM
= c/
√

3

The orbital period at r = 1.5Rs is then

P =
∫ P

0

dt =
∫ 2π

0

r

c/
√

3
dφ =

(2π)3
√

3Rs
2c

=
3π
√

3Rs
c

For a M = 10M� black hole, RS = 2GM/c2 = 29.6 km, so P = 1.61× 10−3 s .

(d) If a flashlight were beamed in the φ direction at r = 1.5RS near a Schwarzschild black hole, the photons
would orbit around the black hole. We expect this because we already found that at r = 1.5RS photons
travelling in the φ direction follow a circular orbit around the black hole.

Problem 3: C&O 17.24

Since this problem is numerical, there might be rounding differences. There should be no points taken off for
small differences in the results.

(a) Equation (7.7) gives the mass function as the right-hand side of

m3
c

(ms +mc)2
sin3 i =

P

2πG
v3
s,r ,

where vs,r = 457 km s−1 is the radial velocity of the star, ms, mc are the masses of the star and compact
object, respectively, and i is the inclination angle. Since the orbital period is P = 0.3226 day, we find
that

m3
c

(ms +mc)2
sin3 i = 6.35× 1033 g = 3.17M�

Looking at the left-hand side of the mass relation, we see that even if i = 90◦, since ms > 0, we know
that the left-hand side must be less than mc. Thus mc > 3.17M� .
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(b) From the center of mass relation, mcrc = msrs, and assuming both orbits are roughly circular, vc =
2πrc/P , vs = 2πrs/P , so ms/mc = rc/rs = vc/vs = (vc,r/ sin i) = (vs,r/ sin i), so we have Eq (7.5):

ms

mc
=
vc,r
vs,r

= 0.0941

Using the result from part (a), and assuming i = 90◦ so sin i = 1, we have

mc

(ms/mc + 1)2
sin3 i =

mc

(ms/mc + 1)2
= 3.17M� (14)

mc = (3.17M�)(0.0941 + 1)2

mc = 3.79M� (15)

Since in reality sin3 i ≤ 1, this means that mc ≥ 3.79M�.

(c) Now supposing i = 45◦, we use the result from equation (14) and find

mc =
(3.17M�)(0.0941 + 1)2

sin3 i
=

(3.17M�)(0.0941 + 1)2

(0.7071)3

mc = 10.7M� (16)

Problem 4: C&O 18.2

For the equilateral triangle formed by M1, M2, and L4 (or L5), the side length of the triangle (the
separation between M1 and M2) is s1 = s2 = a, as shown in Fig 18.1. Eq (18.4)

Φ = −G
(
M1

s1
+
M2

s2

)
− 1

2
ω2r2

and Eq (18.7) (Kepler III for the orbital period)

ω2 =
(

2π
P

)2

=
G(M1 +M2)

a3

are combined to give

Φ = −G
(
M1 +M2

a

)(
1 +

r2

2a2

)
(17)

Now Eq (18.3) gives that
r1 + r2 = a and M1r1 = M2r2

so

r1 = a

(
M2

M1 +M2

)
r2 = a

(
M1

M1 +M2

)
So the law of cosines worked out in Eqs (18.5) and (18.6) for s1 and s2 give

a2 = a2

(
M2

M1 +M2

)2

+ r2 + 2a
(

M2

M1 +M2

)
r cos θ

a2 = a2

(
M1

M1 +M2

)2

+ r2 − 2a
(

M1

M1 +M2

)
r cos θ
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We use the one equation to get cos θ in terms of the other variables, and then we solve the quadratic
equation to get the distance r between the center of mass and either L4 or L5

r = a

√
1− M1M2

(M1 +M2)2
(18)

Plugging equation (18) into equation (17) gives

Φ(L4) = Φ(L5) = −GM1 +M2

2a

[
3− M1M2

(M1 +M2)2

]
(19)

Rewriting this in units of G(M1 +M2)/a, and plugging in the values from Figure 18.3, we get the same
value as reported in Figure 18.3:

Φ(L4) = Φ(L5) = −1
2

[
3− M1M2

(M1 +M2)2

]
= −1.431 (20)

Problem 5: C&O 18.4

Eq (18.19) for the disk temperature, written with x = R/r, is

T = Tdisk x
3/4(1−

√
x)1/4 (21)

We want to find the maximum disk temperature, so we solve for x where dT/dx = 0. So we find

dT

dx
=

3
4
x−1/4(1−

√
x)1/4 − 1

4
(1−

√
x)−3/4 x

3/4

2
√
x

=
3
4
x−1/4(1−

√
x)1/4 − 1

4
(1−

√
x)−3/4x

1/4

2
= 0

So we can solve to find

3x−1/4(1−
√
x)− x1/4

2
= 0

3(1−
√
x)−

√
x

2
= 0

3 =
7
2
√
x

x =
36
49

So T is maximized when r = (49/36)R. Plugging this into equation (21) gives Tmax = 0.488Tdisk.

Problem 6: C&O 28.3

For T = 7.3× 105 K, we plot the Planck function (Eq 3.24), which is

Bν(T ) =
2hν3/c2

ehν/kT − 1
(22)

We choose to plot log10νBν(T ) vs. log10ν over the range log10ν = [15.5, 17.5]. In cgs units, c = 3× 1010

cm/s, k = 1.38× 10−16 erg/K, and h = 6.62× 10−27 erg s.
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Our simple Planck function for T = 7.3 × 105 K is much more sharply peaked than the very broad
spectrum of the quasar (3C 273) from Figure 28.14.

Problem 7: C&O 28.11

(a) For material ejected from a quasar directly towards Earth (so moving entirely radially), the redshift of
the quasar is zQ and the redshift of the ejecta is zeq. To get the relative speed between the ejecta and
the quasar, we start with the relativistic velocity transformation, Eq (4.40), which gives

v′x
c

=
vx/c− u/c
1− uvx/c2

As in Figure 4.2, here we’re assuming Earth is at the origin of frame S (our observer’s rest frame), and
the quasar is at the origin of frame S′, which is moving with speed u/c = vQ/c = βQ relative to Earth.
From the Earth’s frame, the ejecta has speed vx/c = vej/c = βej , and from the quasar’s frame, it has
speed v′x/c = v′ej/c = β′ej . (Since the material is ejected towards earth, v′x < 0.)

We can then write the velocity transformation as

β′ej =
βej − βQ
1− βejβQ

(23)

Redshift is defined as

zQ + 1 =

√
1 + βQ
1− βQ

and zej + 1 =

√
1 + βej
1− βej

so we find

βQ =
(zQ + 1)2 − 1
(zQ + 1)2 + 1

and βej =
(zej + 1)2 − 1
(zej + 1)2 + 1

(24)

Inserting the equations (24) into equation (23) gives

β′ej =
(zej+1)2−1
(zej+1)2+1 −

(zQ+1)2−1
(zQ+1)2+1

1−
[

(zej+1)2−1
(zej+1)2+1

] [
(zQ+1)2−1
(zQ+1)2+1

]
β′ej =

[(zej + 1)2 − 1][(zQ + 1)2 + 1]− [(zej + 1)2 + 1][(zQ + 1)2 − 1]
[(zej + 1)2 + 1][(zQ + 1)2 + 1]− [(zej + 1)2 − 1][(zQ + 1)2 − 1]

6



So

−β′ej =
(zQ + 1)2 − (zej + 1)2

(zQ + 1)2 + (zej + 1)2
(25)

Where β′ej = v′x/c is the x′-component of the ejecta velocity relative to the quasar. Since our direction
choices has v′x < 0, the relative velocity is negative, as it is directed away from the quasar and towards
earth (in the −x′ direction).

(b) If zQ + 1 = 1.158 for quasar 3C 273, then with βej = −0.9842 for the radio knot approaching Earth, we
have for the ejecta an observed redshift of

zej + 1 =

√
1 + βej
1− βej

= 0.08924

So the speed of the radio knot relative to the quasar is then

−β′ej =
v

c
=

(zQ + 1)2 − (zej + 1)2

(zQ + 1)2 + (zej + 1)2
= 0.9882 (26)

Which means the Lorentz factor (from the quasar’s perspective) of the ejecta is γ = 1/
√

1− v2/c2 = 6.53.
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