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Problem 25.3

(a) For the Sun, LB = 2.3 × 1010 L⊙. Since MV,Sun = 4.82 and B − V = 0.65, we find
MB,sun = 5.47. Thus, from Eq. (3.8), MB = MB,Sun − 2.5log10(LB/L⊙) = −20.4.

(b) Using the relation for Sb galaxy, Vmax = 184 km s−1. Observationally, Vmax = 250 km s−1.

Problem 25.8

(a) From Eq. (25.4), MB = −21.8.

(b) According to Eq. (3.6), B −MB = 5log10(d/10 pc), or d = 6.45 Mpc.

(c) From Eq. (25.11), R25 = 26.8 kpc.

(d) M25 = 6.5× 1011M⊙ from Eq. (25.10).

(e) From Problem 25.3, MB,Sun = 5.47. Then, according to Eq. (3.8), LB = 8.1× 1010L⊙.

(f) M25/LB = 8.0.

Problem 25.9

For Sa, < B − V >= 0.75, corresponding to spectral class G8; for Sb, < B − V >= 0.64,
which corresponds to spectral class G2; and for Sc, < B − V >= 0.52, corresponding to F8.

Problem 26.5

Treating the MIlkyWay and the LMC as a binary system with a separation of dLMC = 51 kpc,
we can use Eq. (18.10) to estimate the tidal radius of the LMC due to the MIlky Way. From
Table 24.1, we take M1 = 5.4 × 1011M⊙ for the Milky Way within 50 kpc of the center
(including its dark matter halo) and M2 = 2 × 1010M⊙ for the LMC. Plugging in these
values to Eq. (18.10) gives:

l2 = 8.9 kpc. (1)
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If the angular diameter of the LMC is θ = 460′ = 0.134 rad, then its linear radius is
rLMC = dLMCθ/2 = 3.3 kpc. Since rLMC < l2, the LMC lies within its tidal radius.

Problem 26.8

With the assumption r >> a,

ρ(r) ∼
C

r2
. (2)

The enclosed mass, Mr, can be obtained by taking the integral:

Mr =

∫ r

0

ρ(r)4πr2dr = 4πCr . (3)

The radial equation of motion becomes:

d2r

dt2
= −

GMr

r2
= −

4πGC

r
. (4)

Multiplying through by v = dr/dt, and integrating,

∫ t

0

v
dv

dt
dt = −

∫ r

r0

4πGC

r
dr, (5)

giving v2 = 8πGCln( r0
r
).

Now, take the square root of this expresion and choose the minus sign (since the nebula
is collapsing) to get:

dr

dt
= −(8πGC)1/2

[

ln
(r0
r

)]1/2.

. (6)

This equation can be integrated:

∫

0

r0

dr

(ln(r0/r))1/2
= =

∫ tff

0

(8πGC)1/2dt . (7)

We can then solve for tff , giving:

tff =
r0

(8GC)1/2
. (8)

This shows that the free-fall time is proportional to the radius (tff ∝ r0).
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Problem 26.11

(a) From the data in Example 26.2.2, Tvirial = 6 × 105 K, µ = 0.6, and n = 5 × 104 m−3,
implying ρ = µmHn = 5× 10−23 kg m−3. Then from Eq. (12.14),

MJ ∼

(

5kT

GµmH

)3/2 (
3

4πρ0

)1/2

= 5.3× 1011 M⊙ . (9)

(b) Assuming that Tvirial ∼ 104 K and all other values are as given in part (a), then MJ =
1.1× 109 M⊙.

(c) Using T ∼ 6× 105 K, Eq. (12.16) gives:

RJ =

(

15kT

4πGµmHρ0

)1/2

= 55 kpc . (10)

This value is comparable to the radius of the stellar halo (R = 50 kpc).

Problem 26.13

(a) Taking M = 3× 1013 M⊙ and R = 300 kpc, Kepler’s third law implies an orbital period
of:

P =
4πR3/2

G1/2M1/2
= 1.8× 1017 s = 5.6 Gyr . (11)

This is roughly one-third the age of the Milky Way Galaxy.

(b) M87 is not in virial equilibrium. Objects near the outer edges of the galaxy take too
long to orbit relative to the age of the universe.
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