
Ay 7B: Midterm 1

Solutions

Spring 2012

Problem 1

(a) In the lab frame, v = 0.99c, so γ = 7.09. Also, converting mp into GeV/c2, we get
mp = 1.673×10−27 kg

1.783×10−27 kgGeV = 0.938 GeV/c2.

Thus we use p = γmpv = (7.09)(0.938 GeV/c2)(0.99c)⇒ p = 6.58 GeV/c

We also use E = γmpc
2 = (7.09)(0.938 GeV/c2)(c2)⇒ E = 6.65 GeV

(b) The frame moving along with the proton is the proton’s rest frame, so we simply have that p′ = 0 and
E′ = mpc

2, so

p′ = 0 , E′ = 0.938 GeV

(c) In the CM frame, the velocity of the He nucleus is v′He = −VCM . Thus the momentum of the nucleus is

p′He =
−mHeVCM√

1− V 2
CM

c2

(1)

where mHe = 4mp.

In the CM frame, the velocity of the proton is

v′p =
v0 − VCM

1− VCM v0
c2

(2)

To find the new proton momentum, p′p, we calculate

γ′ =
1√

1− (v′p)2

c2

(3)

(Here, v0 is the proton’s velocity in the lab frame.) We will express γ′ in terms of γ0 (the Lorentz factor
for the proton in the lab frame).

(v′p)2

c2
=

(
v0
c −

VCM

c

)2(
1− VCM v0

c2

)2 (4)

1−
(v′p)2

c2
=

(
1− VCM v0

c2

)2 − ( v0
c −

VCM

c

)2(
1− VCM v0

c2

)2 (5)

=

(
1− v2

0
c2

)(
1− V 2

CM

c2

)
(
1− VCM v0

c2

)2 (6)
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So

γ′ =

(
1− VCM v0

c2

)√
1− v2

0
c2

√
1− V 2

CM

c2

(7)

=
γ0

(
1− VCM v0

c2

)√
1− V 2

CM

c2

(8)

The new proton momentum is

p′p = γ′mpv
′
p =

γ0

(
1− VCM v0

c2

)√
1− V 2

CM

c2

mp
v0 − VCM

1− VCM v0
c2

(9)

So we see

p′p =
γ0mp(v0 − VCM )√

1− V 2
CM

c2

= (10)

−p′He =
4mpVCM√

1− V 2
CM

c2

(11)

⇒ v0
VCM

− 1 =
4
γ0

(12)

Finally,
v0
VCM

= 1 +
4
γ0

= 1.564 (13)

VCM =
v0

1.564
= 0.633 c (14)

(c) (Alternate solution:) For this part, let the unprimed frame be the lab frame (S), and let the primed
frame be the CM frame (S′).

We know that the 4-momentum, p = (E, ~pc), lets us express an invariant quantity, the rest mass, for a
system, since

p · p = E2 − p2c2 = m2c4 ≡ constant. (15)

In the lab frame,

pnet = (Ep + EHe, ppc+ pHec) = (γmpc
2 +mHec

2, ppc) = ((γ + 4)mpc
2, ppc). (16)

So the invariant for the system (proton and helium nucleus) between the lab frame and the CM frame is

pnet · pnet = (γ + 4)2m2
p − (γ2 − 1)m2

pc
4 = (8γ + 17)m2

pc
4 = m2

invc
4, (17)

since m2
pc

4 = γ2m2
pc

4 − p2
pc

2 implies that p2
pc

2 = (γ2 − 1)m2
pc

4.

Now consider the CM frame. In this frame, the net momentum is p′CM,net = 0, by construction. Thus

m2
invc

4 = E′2CM,net − p′2CM,netc
2 = E′2CM,net, (18)

and the net 4-momentum is just
p′CM,net = (minvc

2, 0). (19)
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But think again of how we’ve just expressed our 2-particle system in the CM frame: we wrote it in terms
of the total invariant mass, which is conserved between the CM and lab frames. What if we backtrack,
and consider the motion of the total invariant mass (as a single quantity minv) in the lab frame? Since
the net invariant mass is at rest in the CM frame, and VCM is the velocity between the lab and CM
frames, we know that we can write (using γCM = 1/

√
1− V 2

CM/c2) that

pnet = (γCMminvc
2, γCMminvVCMc). (20)

But because this is in the same frame as our original expression for pnet, we know that the total energy
and total momentum are the same, so

(γ + 4)mpc
2 = γCMminvc

2 (21)

and
ppc = γCMminvVCMc. (22)

Now, it is most convenient to use the fact that pc/E = v/c, so

pnetc

Enet
=
pCM,netc

ECM,net
=
γCMminvVCMc

γCMminvc2
=
VCM

c
(23)

γmpvc

(γ + 4)mpc2
=
VCM

c
(24)

and we get

VCM =
γv

(γ + 4)
= 0.63 c = 1.89× 108 m/s (25)

Problem 2

(a) The mass of a ring of differential thickness dR is:

dM = 2πRΣ(R)dR. (26)

Now, it takes a time dt for this mass to drift inward a differential length dR, therefore:

dM

dt
= 2πRΣ(R)

dR

dt
. (27)

dM
dt is exactly Ṁ , and dR

dt is exactly the drift velocity, u(R). Therefore, rewriting:

Ṁ = 2πRΣ(R)u(R). (28)

(b) Consider a ring of some radial thickness l. If Σ(R) is not a function of time, the interior mass of this
ring must also be constant. The only way for this to hold is for the mass entering the ring’s outer edge
(from radius r+ l) to be equal to the mass exiting the ring’s inner edge (at radius r). This means Ṁ on
the ring’s outer edge must be equal to the Ṁ of the ring’s inner edge.

(c) Use the fact that Ṁ is constant to get:

u ∝ 1
RΣ

, (29)

but Σ is proportional to R−3/2, so:

u ∝ 1
R×R−3/2

∝ R1/2. (30)

Using this proportionality, we can calculate:

uJ

uE
= (5.2)1/2 = 2.3. (31)
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Problem 3

(a) If the redshift is cased by the star’s recession velocity, the redshift is due to the (relativistic) Doppler
Effect – the observed redshift is entirely due to the relative motion of the emitter (the star) with respect
you you, as you sit “at rest”.
Assuming the star is moving away from us radially, the relativistic Doppler shift is given by

νobs = νrest

√
1− v/c
1 + v/c

= νrest

√
1− β
1 + β

(32)

So the redshift is given by

z =

√
1 + β

1− β
− 1 (33)

We solve to find
(1 + z)2 =

1 + β

1− β
(34)

(1− β)(1 + z)2 = (1 + β) (35)

(1 + z)2 − 1 = β(1 + (1 + z)2) (36)

β =
(1 + z)2 − 1
(1 + z)2 + 1

(37)

So we find that

v = c

(
(1 + 3)2 − 1
(1 + 3)2 + 1

)
=

15
17
c =

(
15
17

)
3× 1010 cm/s = 2.6× 1010cm/s (38)

(b) If the redshift of the spectral line is caused because the star is a neutron star, then the redshift is the
result of gravitational redshift (where photons lose energy because they must climb out of a potential
well).
For gravitational redshift caused by a central mass M , we have

z =
ν0
ν∞
− 1 =

(
1− 2GM

r0c2

)−1/2

− 1 (39)

Thus we have
2GM
r0c2

= 1− (1 + z)−2 (40)

r0 =
2GM

c2 (1− (1 + z)−2)
(41)

To get the maximum radius, we see that we want to maximize M , so we will use z = 3 and M = 3M�
to get

R = r0 =
2(6.67× 10−8cm3/g s2)(3)(2× 1033g)

(3× 1010cm/s)2 (1− (1 + 3)−2)
= 9.49× 105cm = 9.49 km (42)

(c) This list is not exhaustive. (All responses exam responses will be considered carefully: there can be
more possible measurements that could be made!)

(i) Measure line width – if there is Doppler broadening of line, it is likely a neutron star, since they
tend to spin very rapidly.

(ii) Zeeman splitting of lines, as NS tend to have strong B fields compared to normal stars.
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(iii) Time variability – NS are smaller, so have a smaller lower limit on the time variability they can
exibit than a normal size star.

(iv) Presence of an accretion disk – an accretion disk would (a) probably not surround a normal star
and (b) would have a small inner edge (so might play into the aforementioned time variability),
and would emit greater relative power in X-rays and γ-rays around a NS. So observing the object
in X-rays or γ-rays and seeing if the object is bright would suggest a NS with an accretion disk.

(v) Take a full spectrum and look at composition – normal stars have lots of H, He, and other lighter
elements; the surface of NS is entirely Fe.
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