
Ay 7B: Midterm 2

Solutions

Spring 2012

Problem 1 (20 points)

(a) Recall the absolute magnitude equation:

Mv = −2.5 log(F (10 pc)/Fref ), (1)

where F (10 pc) is the flux of the object at 10 parsecs and Fref is the reference flux. How many Mo = −2
objects can we have before their combined magnitude reach Mtot = −10? First, let us write down the
absolute magnitude equation for entire collection:

Mtot = −10 = −2.5 log(NFo/Fref ), (2)

where N is the number of objects and Fo is the flux of a single object at 10 parsecs. To get Fo/Fref , we
use the absolute magnitude equation for a single object:

Mo = −2 = −2.5 log(Fo/Fref ), (3)

Fo
Fref

= 100.8. (4)

Plugging this to the equation for Mtot gives us:

4 = 0.8 + log(N), (5)

N = 103.2

N = 1585 (6)

(b) Assuming no dust, the magnitude-distance relation is

mv = Mv + 5 log10(d)− 5 (7)

For our cluster, Mv = −10, so we rewrite our magnitude-distance relation to give the distance d.

mv = 5 log10(d)− 15

d = 10(mv+15)/5 pc (8)

Telescope A, with the limiting magnitude of mv = +25 successfully observed the globular cluster,
meaning that mGC < mvA

= +25, so the distance to the globular cluster must be dGC < d (mvA
) =

10(25+15)/5 pc = 108 pc.

Telescope B, with the limiting magnitude of mv = +20 failed to observe the globular cluster,
meaning that mGC > mvB

= +20, so the distance to the globular cluster must be dGC > d (mvB
) =

10(20+15)/5 pc = 107 pc.

So the limits on the distance to the galaxy are

107 pc < d < 108 pc (9)
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Problem 2 (50 points)

(a) Rmax = Dθmax = 2.394× 1013 m = 7.758× 10−4 pc.

(b) The average number density is:

n∗ =
M

M∗ × V olume
=

3M
4M∗πR3

max

= 6.52× 10−34 m−3 = 1.916× 1016 pc−3. (10)

(c) We can use the virial theorem to get the answer:

GM

Rmax
=

2
2
v2
∗, (11)

solving for v∗:

v∗ =
√

GM

Rmax
= 4.089× 106 m/s. (12)

(d) The mean free path, l, is given by:
l = (n∗σ∗)−1, (13)

Where σ∗ is the cross section of a brown dwarf interacting with another brown dwarf:

σ∗ = π(rint)2 = π(2R∗)2 = 4πR2
∗. (14)

Notice that rint, the interaction radius is 2R∗ for spherical brown dwarfs each with radius R∗. An easy
way to think about this is to note that the center of a brown dwarf needs only to be as close as 2R∗
away from the center of another brown dwarf for the two objects to interact.

The collision time, tcoll, is then given by:

tcoll =
l

v∗
=

1
n∗σ∗v∗

=
1

n∗4πR2
∗

√
Rmax
GM

tcoll = 7.516× 109 sec = 238 years. (15)

(e) The cluster is not a plausible alternative to the supermassive black hole. The collision time is far too
fast! What happens when two brown dwarfs collides? Well, the resulting merged object can have enough
mass to sustain hydrogen fusion: they become stars. If this theory is true, then we can detect these
stars from Earth! Of course, we detect no such clump of stars at the center of our galaxy. Alternatively,
these stars would keep merging and evolving, finally becoming supermassive black holes!

Problem 3 (30 points)

(a) For a density distribution ρ(r), the enclosed mass inside a radius r is

dM(r) = ρ(r)dV = ρ(r)(4πr2dr) (16)

Integrate to find

M(r) =
∫ r

0

dM(r′) =
∫ r

0

4πr′2ρ(r′)dr′ (17)

So now solve for M(r) in the three radii ranges. For r < a, ρ(r) = ρ0, so

M(r) =
∫ r

0

4πr′2ρ0dr
′ =

4π
3
r3ρ0 (18)

2



For a < r < b, ρ(r) = ρ0(a/r), so

M(r) =
∫ a

0

4πr′2ρ0dr
′ +
∫ r

a

4πr′2ρ0

( a
r′

)
dr′ (19)

=
4π
3
a3ρ0 +

∫ r

a

4πρ0ar
′dr′

=
4π
3
a3ρ0 + 2πρ0a(r2 − a2) (20)

Finally, for r > b, ρ(r) = 0, so

M(r) =
∫ a

0

4πr′2ρ0dr
′ +
∫ b

a

4πr′2ρ0

( a
r′

)
dr′ +

�������
∫ r

b

4πr′2(0)dr′ (21)

=
4π
3
a3ρ0 + 2πρ0a(b2 − a2) (22)

So the overall mass enclosed is given as

M(r) =


4π
3 ρ0r

3 r < a
4π
3 ρ0a

3 + 2πρ0a(r2 − a2) a < r < b
4π
3 ρ0a

3 + 2πρ0a(b2 − a2) r > b

(23)

(b) Because we have a disk galaxy, we want to know the rotation curve defined by the circular velocity Θ(r).
If we assume that M(r) is much greater than the luminous matter in the galaxy at every r, then we can
neglect the fact that the luminous matter is distributed in a disk, and just assume that our mass follows
a purely spherical profile.

For a spherically symmetric mass distribution, the rotation curve is found by balancing the centripetal
acceleration against the gravitational acceleration of the enclosed mass:

Θ(r)2

r
=
GM(r)
r2

(24)

so we solve for Θ(r):

Θ(r) =

√
GM(r)

r
(25)

and then we use the mass enclosed given in Eq (23) to find that, for r < a, we have

Θ(r) =

√
4πGρ0r3

3r
=

√
4πGρ0

3
r (26)

For a < r < b, we have

Θ(r) =

√
4πGρ0a3

3r
− 2πGρ0a3

r
+

2πGρ0ar2

r
=

√
2πGρ0ar −

2πGρ0a3

3r
(27)

For r > b, we have

Θ(r) =

√
4πGρ0a3

3r
+

2πGρ0a(b2 − a2)
r

=

√
4π
3
Gρ0a3 + 2πGρ0a(b2 − a2)

1√
r

(28)
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Together this describes the full rotation curve Θ(r):

Θ(r) =


√

4πGρ0
3 r r < a√

2πGρ0ar − 2πGρ0a3

3r a < r < b√
4π
3 Gρ0a3 + 2πGρ0a(b2 − a2) 1√

r
r > b

(29)

(c) We find vesc(r) by balancing the kinetic energy necessary to escape (and assuming that this motion is
entirely radial) with the potential energy at the same radius.

KE + U = 0
1
2
mv2

esc =
GmM(r)

r

vesc(r) =

√
2GM(r)

r
(30)

So to find vesc(b), we use our result from part (b):

vesc(b) =

√
2G
b

(
4π
3
ρ0a3 + 2πρ0a(b2 − a2)

)

=

√
2G
b

(
2πρ0ab2 −

2π
3
ρ0a3

)

vesc(b) =

√
4πGρ0

3
a (3b2 − a2)

b
(31)
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