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1 INTRODUCTION

ABSTRACT

All gravitationally bound clusters expand, due to both gas loss from their most massive
members and binary heating. All are eventually disrupted tidally, either by passing molecular
clouds or the gravitational potential of their host galaxies. However, their interior evolution
can follow two very different paths. Only clusters of sufficiently large initial population and
size undergo the combined interior contraction and exterior expansion that leads eventually
to core collapse. In all other systems, core collapse is frustrated by binary heating. These
clusters globally expand for their entire lives, up to the point of tidal disruption. Using a suite
of direct N-body calculations, we trace the ‘collapse line’ in r,—N space that separates these
two paths. Here, r, and N are the cluster’s initial virial radius and population, respectively. For
realistic starting radii, the dividing N-value is from 10* to over 10°. We also show that there
exists a minimum population, Ny,;,, for core collapse. Clusters with N < Ny, tidally disrupt
before core collapse occurs. At the Sun’s Galactocentric radius, Rg = 8.5 kpc, we find Ny, =
300. The minimum population scales with Galactocentric radius as R(TJ()/ ¥ The position of an
observed cluster relative to the collapse line can be used to predict its future evolution. Using
a small sample of open clusters, we find that most lie below the collapse line, and thus will
never undergo core collapse. Most globular clusters, on the other hand, lie well above the line.
In such a case, the cluster may or may not go through core collapse, depending on its initial
size. We show how an accurate age determination can help settle this issue.

Key words: stars: evolution —stars: kinematics and dynamics — globular clusters: general —
open clusters and associations: general.

a substantial fraction of the most massive globular clusters (M, 2
10° M) exhibit a central peak in stellar density and luminosity, and

In the classic theory of cluster evolution, the interior region contracts
and transfers energy through distant two-body encounters to an
expanding outer halo. This process of relaxation is a consequence
of the negative heat capacity of self-gravitating systems. Eventually,
the rise of central density becomes dramatic, an event known as the
gravothermal catastrophe (Lynden-Bell & Wood 1968). The system
at this epoch is commonly said to undergo core collapse.!

For a hypothetical cluster comprised of identical, single stars, nu-
merical simulations find that core collapse occurs after more than
10 relaxation times (Cohn 1980; Makino 1996). The catastrophe
ends when a tight binary forms near the centre. Binary heating then
not only halts the rise in central density, but leads to a global expan-
sion of the system (Hénon 1965; Aarseth 1971). Observationally,

* E-mail: oleary @berkeley.edu
!'In this paper, we also adopt this terminology. However, as we discuss
later, our usage is more restricted than the currently popular one.

are thought to have undergone core collapse in the past (Djorgovski
& King 1986; Trager, King & Djorgovski 1995; Meylan & Heggie
1997).

Of course, the member stars of real clusters are not identical.
Globular clusters are so old that stellar evolution has pared down
the initial mass distribution to a relatively narrow range. In this
case, the classic theory provides a reasonably accurate description
at sufficiently late times. The vast majority of clusters in the Milky
Way are open clusters, which are much less populous and do not
live nearly as long as globular clusters (Roser et al. 2010). The
evolutionary path of these more modest systems may be strikingly
different.

Regardless of the cluster’s precise initial state, its most massive
stars quickly sink to the centre through dynamical friction. This
mass segregation occurs in less than a single relaxation time (e.g.
Giirkan, Freitag & Rasio 2004, and references therein). Three-body
encounters between the central stars soon create a few massive
binaries, whose heating frustrates the process of core contraction
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(Converse & Stahler 2011; Tanikawa, Hut & Makino 2012). In
systems of relatively low population and size, core collapse never
occurs.

In this paper, we explore these two, very different evolutionary
paths. We first delineate the boundary between the two paths using
an analytic argument. We then verify the location of that boundary
and describe the structural evolution of clusters on either side of it
numerically. Here, we employ the direct N-body integrator NODY6-
GpU (Aarseth 1999; Nitadori & Aarseth 2012). Our simulations
span a population range from about 8 x 10° to over 1 x 10° so
that we may characterize the evolution of both open and globular
clusters. Our simulations include a realistic mass distribution, stellar
evolution, and the influence of the Galactic tidal field.

Our combined analytical and numerical results show that a cluster
must be relatively large and populous to undergo core collapse.
Because of the external tidal field, the evolution of any system
also depends on its location relative to the Galactic centre. For any
fixed location, there exists a minimum population such that sparser
clusters never undergo collapse, regardless of their exact initial
state. We again verify the existence of this minimum population
both analytically and numerically.

A number of previous studies also investigated cluster evolution
through a suite of simulations. In some cases, the researchers in-
cluded populations as high as our maximum value (e.g. Baumgardt
& Makino 2003; Zonoozi et al. 2011). These projects addressed
a variety of specific issues, such as how metallicity affects the
changing appearance of clusters (Sippel et al. 2012). Baumgardt
& Makino (2003) presented the most extensive, simulation-based
investigation to date, focusing primarily on how the stellar mass
function scales with time. Ours is a complementary study, intended
to establish the broad landscape in which clusters evolve.

This work is organized as follows. In Section 2, we analyse the
relevant time-scales for the competition between mass segregation,
relaxation, and stellar mass loss in clusters. We describe our numer-
ical simulations in Section 3 and present the bulk of our results in
Section 4. Finally, we summarize and discuss the implications of
our results in Section 5.

2 THE COLLAPSE LINE

We focus here on the cluster’s evolution after the first few dynamical
times since its formation within a molecular cloud. By that point,
radiation pressure and energetic winds from the most massive stars
have dispersed all cloud gas, leaving the stars to interact only via
their mutual gravity. Subsequently, the bulk of the cluster steadily
expands, until the system is ultimately disrupted tidally, either by
passing molecular clouds or the Galactic field. The central issue we
address is the fate of the cluster’s deep interior.

The evolution of this central core is driven by the competition of
dynamical cooling and heating (see e.g. Hénon 1961). On the one
hand, the core transfers energy outwards to the halo stars through
two-body relaxation, and thereby tends to contract. On the other
hand, a single hard binary near the centre of the cluster may effec-
tively heat the core through three-body interactions, causing it to
expand. The core contains a large fraction of the cluster’s most mas-
sive stars. In the course of stellar evolution, mass-loss from these
objects in the form of stellar winds and supernovae diminishes the
gravitational binding of the core, again promoting expansion.

Consider first a hypothetical cluster of mass M, containing N
identical stars. Here, the central core transfers energy outwards
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through two-body encounters. This transfer occurs on #., the initial
relaxation time-scale

_ 0.17N r3
T In(0.1N)\| GMy’

rel ( 1 )
which we define at the virial radius, ry (cf. Binney & Tremaine 2008,
equation 7.108). We take the virial radius to be r, = GM /602,
where o is cluster’s one-dimensional velocity dispersion. When
tracking r, in our simulations, we determined o directly from the
stellar velocities at each time step.

While the uniform-mass cluster can, in principle, form binaries,
the time to do so is several hundred #, (Binney & Tremaine 2008,
equation 7.12). Long before this, the cluster’s central density rises,
eventually in a divergent manner in a finite time. Numerical simu-
lations suggest that this core collapse occurs at #.. ~ 16t (Cohn
1980; Makino 1996). Despite the idealized assumption underlying
this picture, it is still frequently used as the framework to describe
the evolution of all clusters.

Realistic clusters have a broad spectrum of stellar masses. The
most massive stars, whatever their initial location, migrate towards
the centre as a result of dynamical friction. For a star with mass
mx= 3> (m), this process occurs over the dynamical friction time #4y,
which is brief compared to #.;:
lar ~ @treL (2)

my
Here, (m) is the cluster’s average stellar mass (Fregeau et al. 2002).
Both the mass density and average stellar mass in the core are
thereby enhanced.

Since the relaxation time in the core is smaller than that of the
cluster as a whole, the core effectively decouples from the rest of
the system, and evolves separately, a process known as the Spitzer
(1969) instability. For decoupling to occur, a sufficient number of
massive stars must migrate to the cluster centre, forming a subgroup
whose dynamical temperature, proportional to the mean value of
mao?, rises above that of surrounding stars. The time required for
decoupling, 4., depends on the density profile of the cluster and
the degree of primordial mass segregation (e.g. Quinlan 1996; Ves-
perini, McMillan & Portegies Zwart 2009). A representative value,
adequate for our purpose, is f4ec = 2 4y.

One significant result of the core’s fast evolution is the formation
of hard binaries consisting of relatively massive stars. These binaries
are created through three-body interactions. Their formation time is
very sensitive to the largest mass involved, and scales approximately
as m;'o (Ivanova et al. 2005; Converse & Stahler 2011). Very soon
after decoupling, at least one massive binary forms, heats the core
through three-body interactions, and creates global expansion of
the cluster. This binary can be disrupted or ejected from the cluster;
however, a new one soon replaces it (Heggie & Hut 2003).

In a cluster of sufficiently high population, stellar evolution pre-
vents the formation of massive binaries in the core. Let 7,,,; represent
the main-sequence lifetime of the most massive stars. As we con-
sider clusters of larger N and comparable size, both #. and #4.. grow.
When 7,4, exceeds 1,5, the most massive stars explode as supernovae
before they can migrate to the centre and form binaries. It is true
that the disappearance of massive stars already located in the core
temporarily heats the cluster, but eventually, the region begins to
contract via two-body relaxation. These populous, aging clusters
have a relatively narrow mass distribution, and evolve towards core
collapse in a manner similar to that of traditional theory.

We see that the condition 4. =~ f,,,s represents a dividing line be-
tween clusters that can undergo core collapse and those that cannot.
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Figure 1. The collapse line in the r,—N plane. Clusters starting above the
solid curve undergo core collapse if they survive long enough. Those starting
below this curve never experience core collapse. Finally, clusters starting
above the diagonal, dashed line are tidally disrupted at a Galactocentric
distance of 8.5 kpc. Each dotted, diagonal line represents the indicated
relaxation time fre]. Clusters in the upper, shaded region have f,¢ greater than
tu, the Hubble time, and so never relax. The shading around the solid curve
shows the range of values it may take depending on the clusters’ precise
initial conditions. The discrete symbols show the initial conditions of our
simulations. Crosses represent clusters that failed to achieve core collapse,
while filled circles are clusters whose central number density eventually
increased.

If we elevate this condition to an exact equality, then equations (1)
and (2) may be used to solve for r, in terms of N,
m, In(0.1N)

(m) N

In this equation, m+ is the upper limit to the stellar mass. Any
star with m» 2 10M@ has a f, shorter than 2 x 107 yr, a time
approaching that during which the cluster was still embedded in its
parent molecular cloud.” If we choose mx = 10 M and a minimum
mass of 0.1 M, then the average mass is (m) ~ 0.6 M, for the
initial mass function of Miller & Scalo (1979). Setting #,,s = 2 X
107 yr, we find the collapse line:

6.9 + In Ny \ *°
coll =2 | ———F— C, 4
Feoll ( 6.9v/N; ) P @

where Ny = N/10*, and 6.9 = In (10*). We plot equation (4) as the
solid line in Fig. 1. The dotted, diagonal lines in the figure represent
the indicated values of ;. Systems within the shaded region in the
upper-right corner can never relax, since f, exceeds the Hubble
time, ty = 14 Gyr.

In numerically evaluating the right-hand side of equation (3),
we have made certain definite, but somewhat arbitrary, choices. For
example, the literature offers a number of prescriptions for the field-
star initial mass function. Using the Kroupa & Weidner (2003) initial

r3* =291t,\/G (m) 3)

2 Optically visible clusters younger than 10 Myr do exist, but are relatively
rare. In the catalogue of 642 open clusters published by Kharchenko et al.
(2012), only 26 have tabulated ages less than 10 Myr.
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mass function with the same upper and lower bounds for the stellar
mass would reduce (m) to 0.45 M and thus shift the collapse line
in Fig. 1 to the right by Alog N ~ 0.12, while preserving its slope.
Retaining the Miller & Scalo initial mass function, but increasing
mx by a factor of 2 would lower #,,, to 1 x 107 yr, still a reasonable
estimate for the embedded duration. Since the product (f,,sm+) is
insensitive to m« in this regime, the collapse line would shift only
slightly to the left. Primordial mass segregation and variations in
the initial density profile of the cluster introduce a similar amount
of uncertainty. It is therefore more accurate to envision the collapse
line we plotted in Fig. 1 as a narrow band of total width Alog N
~ 2log A(m) ~ 0.2. We indicate this band by light shading in the
figure.

3 N-BODY SIMULATIONS

In this work, we have performed an extensive suite of N-body simu-
lations using the direct N-body integrator NoDY6-GPU (Aarseth 1999;
Nitadori & Aarseth 2012) accelerated with graphics processing
units.> Our simulations include both single and binary star evo-
lution, treating mass-loss as an instantaneous process (Hurley, Pols
& Tout 2000; Hurley, Tout & Pols 2002). We also include a rep-
resentation of the Galactic tide, as described below. We focus on
the evolution of star clusters after the primordial gas has been re-
moved from the system by both low-mass stellar outflows and by
the ionization and winds from massive stars.

We initialize our clusters with single stars distributed in a Plum-
mer (1911) potential,
GMC|
where a = (3nt/16)r, =~ 0.59r, is the Plummer radius and
M = N{m). The mass of each star is then selected between 0.1 and
10 Mg, following the initial mass function of Miller & Scalo (1979).
After generating the stellar distribution, the masses are rescaled
so that the maximum stellar mass is exactly 10Mg), with (m) ~
0.6 M. For simulations with a fixed N, both the masses of all stars
and their positions scaled to the virial radius are identical, to reduce

the stochastic noise. No initial mass segregation is imposed.

The early evolution of a cluster depends in detail on the fraction
and spatial distribution of primordial binaries (see, e.g. Portegies
Zwart, McMillan & Makino 2007; Trenti, Heggie & Hut 2007).
Rather than explore this dependence, we have chosen to start all
runs with single stars only. This choice gives us a uniform set of
initial conditions and, in any case, has little practical effect on the
subsequent evolution. As has been shown in previous studies (e.g.
Tanikawa et al. 2012), and as we verify, central binaries rapidly
form after the more massive cluster members drift to the centre via
dynamical friction.

‘We select the cluster virial radii 7, and sizes N to cover the transi-
tion in evolutionary path from global expansion to core collapse for
systems similar to those observed in the Milky Way. In Fig. 1, we
show the initial conditions for 16 of our simulations which bracket
the collapse line (equation 4). The clusters have populations N start-
ing from 8192 and increasing, by a factor of 2, to a maximum of N
=131 072. The minimum r,-value, used only in conjunction with N
=16 384, was 1.0 pc. For all other N-values, we used r, = 1.3, 2.0,
and 3.0 pc. The upper limit for N was chosen for practical reasons.
Simulations with N = 131 072 took a few weeks to complete on a

Ppi(r) = — )

3 http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
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single desktop with a GPU. Increasing the cluster population even
by a factor of 2 would have required several months per run.

The clusters evolve in a spherical tidal gravitational field simi-
lar to that experienced by Milky Way clusters on circular orbits.
Specifically, we adopt an isothermal potential with a constant cir-
cular velocity, v, = 220kms~'. With this potential, there is an en-
closed mass of Mene = 9.6 x 10'°(Rg/8.5 kpc) Mo within an orbit
of radius Rg. Unless otherwise noted, all simulations assume the
clusters follow a circular orbit of radius 8.5 kpc. Stars are removed
from our simulations when they are outside of 2r,, where r; is the
tidal radius:

1o = Ra(Ma/2Meo)'. ©6)

For our models, the value of r; ranges from 20 to 60 pc.

We run all of our simulations for a minimum of 15¢.,. If the
cluster does not exhibit core collapse by ¢t = 15 #,.], we continue the
simulations until the system loses at least 90 per cent of its initial
population. In none of these cases did core collapse occur before
the cluster dissolved.

4 RESULTS AND ANALYSIS

As first envisioned, core collapse occurs when the central density
of a cluster rises in a sharply accelerating manner. Such behaviour
was first predicted theoretically (Hénon 1961; Lynden-Bell & Wood
1968), then clearly exhibited in both fluid models of clusters (Larson
1970) and in N-body simulations of idealized systems comprised of
identical-mass stars (e.g. Aarseth, Hénon & Wielen 1974; Makino
1996). In these cases, there is no ambiguity in defining the central
density or describing its temporal change. However, subtleties arise
when analysing modern simulations that follow the dynamics of a
stellar population spanning a realistic distribution of masses.

Our main goal is to give an account of cluster evolution that
will prove useful when considering real, observed systems. These
are only seen in projection against the plane of the sky. Hence, we
begin by discussing the evolution of the projected, two-dimensional
central number density, N,. We focus on the number, rather than
mass density, since the latter may change because of local processes,
such as stellar mass loss via winds. We defer discussion of three-
dimensional effects to the following subsection. There we also view
our results within an alternative framework that is also frequently
employed — the evolution of the cluster’s core radius.

4.1 Evolution of the projected central density

Before even choosing an operationally suitable definition of A,
we must first be able to locate with precision the cluster’s centre.
Following von Hoerner (1960), we first associate a local surface
density N; with each cluster member, excluding escapers, here
labelled by the index i. This member can be a single star or a binary.
To establish each V;, we use the area spanned by the object’s seven
nearest neighbours (Casertano & Hut 1985). Then, relative to any
convenient origin, the cluster centre is the density-weighted average
position vector of all the members:

R _ZinM
o — Z,./\/; .

For cluster members that are binaries, R; locates the centre of mass
of the pair. Note again that all vectors are two-dimensional.
Having located the centre, we find NV, by counting up the cluster
members within a concentric circle. If the circle is chosen to enclose
a fixed and relatively small number of stars, e.g. 7 or 70, then the

)
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defined N, undergoes large Poisson fluctuations. In addition, the
adopted radius should scale with the total cluster population N,
which varies widely in our suite of simulations. Let R, be the radius
containing, at any time, half the total members. If f is a number
less than unity, then the central density NV, is defined as the number
of stars within the radius fRy,, divided by the corresponding surface
area. Choosing an f-value that is relatively high (e.g. 0.1) smears out
the evolution. We have found in practice that f = 0.01 yields an N,
that exhibits a smooth evolution while retaining easily discernible
trends. Obviously, there is some latitude in this definition; changing
f by a factor of 2 or so in either direction makes no appreciable
difference in the resulting N,(¢), except for the amount of noise in
the results.

To undergo core collapse, the cluster should exhibit an acceler-
ating rise in central density. In particular, we define core collapse
to occur when the central density of the cluster exceeds its initial
density,*

No
No(0

In Fig. 2, we plot N\, as a function of time for nine runs. Here, we
have normalized N, by N (0), and the time ¢ by the initial value
of t.;. All clusters with an initial r, of 3.0 pc (fop row) undergo
core collapse, according to our criterion. Of clusters starting with
ry = 2.0pc (middle row), those two with N > 32768 undergo
collapse. Finally, of the clusters with r, = 1.3 pc (bottom row), only
that with the highest N reaches this state. In all these cases, the
initial parameters of the clusters place them above the collapse line
in Fig. 1. These systems have relatively large N and most closely
mimic the behaviour of uniform-mass clusters.

In all such runs, we see that the central density, after exceeding
its initial value, later plunges below it and then climbs again. If the
simulation were extended to longer times, this pattern would re-
peat. Such ‘gravothermal oscillations’ are caused by the successive
formation and ejection of central binaries. The phenomenon has
long been documented in the theoretical literature on equal-mass
systems (Bettwieser & Sugimoto 1984; Goodman 1984).

In contrast to this behaviour is that of clusters with t4eec < fis, 1.€.
those starting below the collapse line in Fig. 1. In these, the central
density never exceeds its initial value, except perhaps transiently
early in the evolution. (Such excursions last about one dynamical
time.) These systems undergo global expansion, as was found in
the simulations of Converse & Stahler (2011), and as we will show
in more detail below. In Fig. 1, we have marked the model clusters
that undergo core collapse with filled circles, and those exhibiting
global expansion with crosses. It is evident that the collapse line
indeed demarcates the two distinct evolutionary paths.

The maximum normalized central density attained by a cluster
increases with both N and r,, from the bottom left to the top right in
Fig. 2. Graphically, the systems that reach the highest central density
during core collapse are farthest above the collapse line. For systems
lying close to the line, relatively small changes in N or r, can result
in the central density either falling a bit below or slightly above its
initial value. In such marginal cases, it is unclear whether the cluster
should be deemed as undergoing core collapse. Further, we have
noted that our operational definition of the central density itself is

> 1. ®

4 To minimize Poisson fluctuations, we determine the initial central density
by taking the maximum value over the first 20 dynamical times. If we instead
took the average value, the cluster would, according to our criterion, start in
a core-collapsed state.
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Figure 2. Normalized central surface number density. We plot the central projected number density of stars within 0.01Ry, Ny, normalized by the initial
density, Ny (0), as a function of time for nine of our simulations. The number of stars, N, and virial radius, ry, of each cluster is labelled in the panel. Also
labelled is the initial relaxation time, f. The dashed line shows the threshold for core collapse. In general, the depth of the collapse increases with N (from

left to right) and r (from bottom to the top). Only the clusters above the collapse line (see Fig. 1), however, undergo core collapse.

somewhat arbitrary. These factors introduce additional uncertainty
in the true location of the collapse line, but the induced width is
small compared to that arising from initial conditions, as outlined
in Section 2.

4.2 Three-dimensional evolution: core radius

We gain a better physical understanding of the cluster’s behaviour by
examining it not just in projection, but in three-dimensional space.

MNRAS 444, 80-92 (2014)

The extensive literature in this field has focused traditionally on the
evolution of the core radius, again defined three-dimensionally. It is
instructive to view our main result in this perspective, both to place
it in the context of previous research, and to further elucidate the
two evolutionary paths.

As in Section 4.1, we must first establish the cluster centre, this
time in three dimensions. We again follow von Hoerner (1960)
and Casertano & Hut (1985), using the seven nearest neighbours
to assign a local, volumetric number density n; to each cluster
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member. We identify the cluster’s centre as the density-weighted
average position vector of all members:

dirini

ini
Note that the additional ‘n’ subscript specifies our use of number
densities in the weighting. We define a number-weighted core ra-
dius, denoted r.,, by finding the average distance of members from
the centre, again weighted by the local number density:

Z,‘ |ri — ronln;

Fon= "y —.
doini

Our definitions of the cluster centre and core radius follow those
in the literature, but with one difference. Traditionally, the weighting
factor is the mass density p; associated with each member.> Using
p; instead of n;, we may alter equations (9) and (10) to define
the analogous mass-weighted central position vector, 7., and core
radius, r.y,. It is also traditional to track the evolution of the cluster’s
tidal radius, 7. Beyond this radius, a star escapes the cluster if the
system is on a circular orbit around the Galactic centre. When

®

Ton =

10)

rcm

<1073, an

It

the cluster is traditionally said to undergo core collapse (e.g. Makino
1996; Gurkan et al. 2004; Portegies Zwart et al. 2007).

For the evolution of an idealized, single-mass cluster, the number
and mass densities are proportional at all times. Hence, 7., = rcp.
In this case, simulations find that the cluster’s interior density even-
tually exhibits a power-law profile. That is n(r)ocr™, where r is
the distance from the centre and the exponent p =~ 2.2 (see, e.g.
Cohn 1980). At this epoch, the core radius, as defined by equation
(10), shrinks to zero, and the traditional criterion for core collapse,
equation (11), is satisfied.

In more realistic systems containing a range of stellar masses,
the two definitions of core radius are not equivalent. The behaviour
of r.,(¢) and r.,(7) is more complex and interesting than in single-
mass models. Fig. 3 displays the evolution of the two quantities
for two simulations that lie on either side of the collapse line with
N = 16 384. In the left-hand panel (with r, = 1.0 pc), which shows
a cluster that does not undergo core collapse, r.,(f) exhibits fluctu-
ations, but does not deviate by more than a factor of a few from its
value at f = £,.°

On the other hand, r.,(f) does have several dramatic plunges.
These are the result of mass segregation. At each time, a few mem-
bers of especially large mass have drifted to the centre via dynami-
cal friction. These members couple with others to form the binaries
which cause the cluster to expand, but they do not substantially
increase the central number density. The first such event occurs in
less than a single relaxation time, as can be seen in the left portion
of the panel. The stars in question contribute a small fraction of
the cluster’s total mass (Gurkan et al. 2004), and a much smaller
fraction of the total number of stars. In this simulation, fewer than
10 stars are involved in the contraction of r¢p,.

The right-hand panel of Fig. 3 displays the evolution of r., and
7em for a cluster that does undergo core collapse, with r, = 3.0 pc.
Here, there are no early plunges of r.y(f) associated with mass

5 Some authors have used \/Z; pl.z\r[ — roml?/ Z; pl.2 as the definition of
the core radius. See, e.g. McMillan, Hut & Makino (1990).

6 The cluster as a whole expands after the formation of the first binary.
However, r¢, remains roughly constant as the number of stars in the core
declines (see Section 4.3).
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segregation, since the most massive stars die before they can reach
the centre. The two core radii now track each other closely. In
particular, both take a sharp drop at r & 11 ., which marks the
epoch of the first core collapse, according to our definition. By this
point, the cluster’s mass spectrum has narrowed considerably from
the initial state, just as in observed globular clusters. The fraction of
cluster mass within r.,, at the formation of the first binary is similar
to the simulation in the left-hand panel.

4.3 Three-dimensional evolution: Lagrangian radii

We gain a more detailed understanding of the cluster’s behaviour
by following the evolution of its interior density. Traditionally, re-
searchers have considered spherical shells that contain a fixed frac-
tion of the system’s total current mass. Here, we will follow this
convention, and thus trace the radii of individual mass shells. How-
ever, we are also interested in shells that contain a fixed fraction of
the current, total population. A ‘number radius’ containing, e.g. 10
per cent of the population, does not generally contain 10 per cent
of the cluster mass. Indeed, the differing evolutions of the num-
ber and mass radii provide further insight into the nature of the two
evolutionary paths of the cluster and the impact of mass segregation.

Fig. 4 displays the evolution of selected number and mass radii
for the same two clusters as in Fig. 3, i.e. systems lying on either side
of the collapse line. The top two panels show number radii for both
clusters. The one starting with r, = 1.0 pc lies below the collapse
line. Here, the number radii generally expand with time. It is only
the innermost shell, containing 0.001 of the current population, that
has repeated dips in its radius. These dips are associated with binary
formation by massive stars, as discussed in Section 4.2. Note that
the shell in question contains at most 17 stars. Only on this tiny
scale does a number radius ever decrease significantly. In contrast,
95 per cent of the cluster population expands monotonically from
the start, as exemplified by the shell containing 5 per cent of the
cluster population.

The top-right panel traces the evolution of number radii for the
cluster starting with r, = 3.0 pc and lying above the collapse line.
In this case, the number radii in the deep interior evolve more
smoothly, since there are no repeated dips associated with massive
binary formation. All radii eventually contract, and the interior ones
plunge steeply at t = 11 |, the time of core collapse.

We get a very different impression when we examine the mass
radii for the same systems. The bottom two panels show mass radii
for the same two clusters. For the one with an initial r, of 1.0 pc,
several radii have repeated, sharp plunges, much steeper than those
of the analogous number radii. Each plunge occurs when a few
massive stars drift to the centre. The first such event coincides with
the formation of the first hard binary. At this point, the interior
mass shell comprising 1 per cent of the cluster mass contracts by an
order of magnitude and contains only seven stars. Just afterwards,
all mass shells rapidly enlarge, a manifestation of binary heating.

Another traditional criterion for core collapse is the contraction of
interior mass shells (e.g. Giersz & Heggie 1997; Giirkan et al. 2004).
We now see that mass segregation, and not the global relaxation of
the cluster, may be responsible for this contraction. In the present
case, only the outermost 50 per cent of the cluster’s mass expands
for the entire run. At the same time, the physical spacing between
almost all stars, except a very few near the centre, steadily increases.
Thus, the system truly undergoes global expansion. The net efflux
of stars from the central region accounts for the fact that the core
radius r¢,(#) stays roughly constant, as noted previously.
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Figure 3. Evolution of the core radii r, and r.y for a cluster that does not undergo core collapse (left-hand panel) and one that does (right-hand panel). In
both cases, the number-weighted radius r¢, is the thicker curve that is higher in the plot. As in Fig. 2, we measure time relative to the initial value of fj. Note

the scale of the horizontal axis changes from logarithmic to linear at ¢/f;e) =

In the bottom-right panel, we see the evolution of mass shells
in the cluster that is initially larger. For this system, the mass and
number radii track each other quite closely, i.e. there is little sign of
mass segregation. Again, there are no deep plunges of shells early in
the evolution. Massive stars that drift to the centre during that epoch
die out before reaching it. When contraction finally does occur, it
involves interior number and mass shells. At this point, about 10
per cent of the cluster’s total population and mass participate in the
contraction. There is large-scale energy transfer from the interior
to the outside, as documented numerically by Converse & Stahler
(2011). Contraction again ends with central binary formation and
subsequent rapid expansion.

4.4 Expansion and tidal disruption

In both clusters shown in Figs 3 and 4, the bulk expansion just after
formation of the first binary exhibits power-law behaviour. Thus,
the virial radius r, scales as (¢t — 7,)’, where ¢, is the appropriate
binary formation time. Hénon (1965) showed that such homologous
expansion is expected whenever the cluster has a steady, central heat
source. He further showed that p = 2/3 under these circumstances,
regardless of the detailed physical origin of the heating.

Fig. 5 demonstrates that this power-law expansion is quite gen-
eral, in agreement with previous studies (e.g. Gieles et al. 2010, and
references therein). Here we display, in a log—log plot, the evolution
of r, in three clusters with N =32 768. The cluster that has an initial
ry of 1.3 pc does not undergo core collapse. In this case, we find
that p = 0.4, less than the prediction of Hénon. Successively larger
clusters have shallower slopes: p = 0.3 for r, =2.0pc, and p = 0.2
for r, = 3.0 pc. Expansion in the last case is largely due to continual
mass-loss via stellar evolution, a process that is not centrally con-
centrated. By the time of core collapse at t = 11 ¢, tidal stresses
have begun to decrease r, drastically.

Whether a cluster’s expansion is powered by central binary heat-
ing or pervasive, internal mass loss, the distended system eventually
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feels the effect of the Galactic tidal field.” If the initial virial radius
of a cluster exceeds the tidal radius r;, as given in equation (6),
then that system disrupts in a few crossing times, long before either
central binary formation or two-body relaxation can occur. We plot
the relation r, = r as the diagonal, dashed line in Fig. 1.

This tidal disruption line represents an extreme limit, as clusters
begin to lose members through the Galactic field well before this
point is reached. In Fig. 6, we show the evolution of five repre-
sentative clusters that span the collapse line. The virial radius 7,
plotted is the same as in Fig. 1, except that it now represents not the
initial value (here 1.3 pc in all cases), but the instantaneous one that
evolves with time.

All curves in Fig. 6 initially rise upwards, signifying expansion
at constant N. Well before reaching the nominal tidal disruption
line, each cluster’s members start to be stripped away, and the curve
moves to the left. Thereafter, each cluster follows a path roughly
parallel to the tidal line but displaced below it. Thus, the virial radius
shrinks with decreasing N, but remains a constant fraction (about
0.5) of the current ry.

We also mark, with a horizontal bar on each evolutionary curve,
the onset of sustained binary formation. From this time forward,
there are one or more hard binaries in the system for most time steps
of the simulation.® In clusters that begin below the collapse line, the
first binaries form very quickly because of mass segregation. The
event is delayed in systems above the collapse line that eventually

7 Giant molecular clouds that pass sufficiently close to a cluster also disrupt
it, a process first described in the classic work on tidal shocks by Spitzer
(1958). Passage of the cluster through a spiral arm has a similar, impulsive
effect (Lamers & Gieles 2006). The latter authors find that the two effects
together are more efficient than the Galactic tidal stripping included in
our simulations, at least near the solar Galactocentric radius. Hence, our
disruption times should be considered upper bounds, to be refined by future
work.

8 For our purposes, a hard binary is one whose internal binding energy
exceeds 5 per cent of the top-level binding energy for the entire cluster.
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Figure 4. Evolution of the number radii (top row) and mass radii (bottom row) for a cluster with N =16 384. For a starting virial radius of r, = 1.0 pc, the
cluster does not undergo core collapse, while it does for ry, = 3.0 pc. Within each panel the displayed Lagrangian radii enclose a fraction f = 0.001, 0.01, 0.05,
0.10, 0.25, 0.50, 0.75, and 0.90 of the cluster’s total population or mass. Note again that the scale of the horizontal axis changes from logarithmic to linear at

t/trel = 1, where f,¢] is the initial relaxation time.

undergo core collapse. This delay is caused by the loss of the most
massive cluster members through stellar evolution.

In Table 1, we list the characteristic evolutionary times for all five
clusters shown in Fig. 6. The first three columns give, respectively,
the initial population N, the total cluster mass, M., and the relaxation
time, t., where the latter was obtained from equation (1). The
time #;, in the fourth column marks the onset of sustained binary
formation at the cluster centre. For the two clusters starting above
the collapse line, we next list f., the time of core collapse, as
judged by the rise in central density (recall equation 8). Finally, the
last column in the table gives #,, the time by which the Galactic tide
has stripped away half the original mass.’

9 For the cluster of largest N, we stopped the evolution when only 63 per
cent of the original mass was lost.

Note from Table 1 that central binary formation begins before
core collapse, if the latter occurs at all. Binaries form in response to
the increase in central density, and their heating of the cluster may or
may not prevent a further increase in central density. Consider, for
example, the cluster with initial r, = 1.3 pc and N =32 768, which
is below the collapse line. As seen in Fig. 2, the central density starts
to rise at t &~ 61,. Binary heating soon causes the density to fall
again. The cluster with the same r,, but N =131 072, starts above
the collapse line. Here, binaries start to form at r ~ 7t,;, where
Fig. 2 shows a relatively small and transient rise in central density.
Later in the evolution, binaries continue to form, but their heating
is insufficient to halt a second, steeper rise in central density and
ultimate core collapse.

Fig. 6 shows, as did Fig. 1, that the tidal disruption and collapse
lines intersect. The cluster population at this intersection, which we
denote Ny, represents the smallest value for which core collapse
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Figure 5. Evolution of the virial radii for three clusters with N =32,768.
Each curve is labelled by the starting values of the virial radius. In all cases,
there is an extended period of power-law expansion, where the expansion is
shallowest for the cluster with r, = 3.0pc. As before, t,¢] refers to the initial
relaxation time.
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Table 1. Characteristic times of five clusters.

N M Trel Toin Tec h
M@) Myr)  Myr)  Myr)  (Gyr)
8192 4800 57 17 - 0.80
16 384 9600 76 24 - 1.23
32768 19 000 112 198 - 1.82
65 536 38 000 142 669 923 2.92
131072 77 000 193 1103 2131 >2.94

107 yr

yr
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10*
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Figure 6. Evolution of five representative clusters in the r,—N plane. For
each cluster, the horizontal lines marks where the clusters begin sustained
binary formation and burning. All clusters start with r, = 1.3 pc. For the
leftmost clusters with an initial N of 32 768 or fewer, we evolve the system
until disruption. We evolve the more massive clusters only until # = 15,
before they lose half of their initial cluster members. Note that all curves
eventually veer in a direction nearly parallel to, but below, the tidal disruption
line.
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Key evolutionary times for the five clusters shown in Fig. 6,
with r, = 1.3 pc. The first three columns list the initial
population (N), mass (M), and relaxation time (#). The
remaining columns show the times for onset of binary for-
mation (#pin), core collapse (#.), and tidal stripping of half
the initial mass (#,).
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Figure 7. A plot of Npin, the minimum cluster population capable of un-
dergoing core collapse, shown as a function of the Galactocentric radius
Rg. Most of our simulations were run with Rg = 8.5kpc, indicated by
the right vertical arrow. To demonstrate the role of Ny, explicitly, we ran
two additional simulations with Rg = 0.5 kpc, indicated by the left vertical
arrow.

is possible. That is, clusters starting with N < Np, simply expand
and then tidally disperse, regardless of their starting virial radii.

To find a quantitative expression for Ny;,, we set M = Npin (m)
in equation (6), and then equate r; to the collapse r, in equation (3).
We find

Nmin 8.3 fos ny GMenc

100.1Npin) m\| RE

12)

It is evident that N, depends on the Galactocentric radius Rg.
We show this dependence in Fig. 7. Although equation (12) has no
simple analytic solution for Ny, it is well fitted by a power law:

R -9/8

G

Nmin & 3500 . 13)
1kpc

Here, we have established the coefficient by using our standard
values for mx, (m), and t,,,, and by assuming an isothermal potential
when evaluating Mep..
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If we set Rg equal to the Sun’s Galactocentric radius of 8.5 kpc
in equation (13), we obtain N, = 300, the value seen in Fig. 6,
and indicated by the right vertical arrow in Fig. 7. In order to
demonstrate explicitly the significance of N, through simulations,
itis infeasible to employ this Solar system value of Rg, since clusters
with Npin < 300 are subject to such large-scale fluctuations that
their central densities do not evolve smoothly. Accordingly, we
have rerun several simulations with Rg lowered to 0.5 kpc, where
we expect Nyin & 8000 (see the left vertical arrow in Fig. 7).

The left-hand panel of Fig. 8 shows the new, shifted tidal dis-
ruption line in the »,—N plane. Here, r, has its original meaning
from Fig. 1, i.e. it is the initial virial radius. Also indicated in this
panel are the initial conditions for our two simulations, both with N
= 32 768. These conditions place both clusters above the collapse
line, and yet neither actually undergoes core collapse, as the crosses
in the figure indicate.

The cluster starting with r, = 3.0 pc (left cross in Fig. 8) disrupts
within a few dynamical times. When Rg was 8.5 kpc, this same
system experienced strong core collapse, as seen in the top-middle
panel of Fig. 2. The cluster with r, = 2.0 pc also underwent core
collapse when Rg was 8.5 kpc (middle panel of Fig. 2). With the
new Rg-value, N = 4 N, but the system’s proximity to the tidal
line leads to a very different evolution. As seen in the right-hand
panel of Fig. 8, the central surface density monotonically decreases
in less than a relaxation time, as it did when the same cluster was
at Rg = 8.5 kpc (see the middle panel of Fig. 2). Now, however, the
total cluster mass M, falls precipitously in that same interval. The
combination of tidal stress and internal mass-loss promotes global
expansion until the system completely disperses. By the last time
shown, t = 0.7 t,¢, the cluster has lost 90 per cent of its original
population.

5 DISCUSSION

5.1 Summary of results

In this paper, we have shown that a key process in the theoretical
account of cluster evolution, internal relaxation leading to core
collapse, does not occur for all possible initial conditions. Within
the r,— N plane, we have found, first analytically, the collapse line
that separates the two distinct evolutionary paths. For this purpose,
we compared two time-scales. The first is the time required for
the most massive stars to settle to the cluster centre via dynamical
friction. The second is the main-sequence lifetime of these same
stars. Clusters for which these two times are equal sit on the collapse
line in the r,—N plane.

Only clusters whose initial sizes and populations place them
above the collapse line evolve in the manner envisioned by the
classical theory, transferring energy outwards and eventually un-
dergoing core collapse with a rapid rise in central number density.
Those starting below the collapse line globally expand as a result of
binary heating that begins before stellar mass loss drives the clus-
ter to expand. The central number density of a cluster born below
the collapse line never exceeds its initial value. We have verified,
through a suite of numerical simulations, that clusters indeed follow
these two paths. In Sections 5.2 and 5.3 below, we use this theoret-
ical framework, in a preliminary way, to interpret observations of
Milky Way clusters.

For the representative sample of clusters in our study, all even-
tually disrupt tidally, regardless of where they begin in the r,—N
plane. Again, we first proceeded analytically, finding a tidal disrup-
tion line in the plane. We also tracked the disruption in our simu-
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lations, using only the Galactic potential for simplicity. Finally, we
have shown that clusters below a certain minimum population reach
the point of tidal disruption without ever undergoing core collapse,
regardless of their initial size. Near the Sun’s Galactocentric radius,
we find that this minimum cluster population is Ny, 2 300. Future,
more detailed simulations that include tidal disruption by spiral
arms and giant molecular clouds may increase this figure, although
the shape of the tidal line will be similar.

Many of the individual points we have made regarding cluster
dynamics have been described previously. It has long been appreci-
ated that introducing a stellar mass spectrum dramatically alters the
course of evolution from that of an idealized, uniform-mass system
(Aarseth 1974). Similarly, the critical role of central binaries in both
frustrating core collapse and inducing global expansion is well es-
tablished (Lightman & Shapiro 1978). That binary heating itself is
inoperative for a cluster that is too large and massive is also known
(Inagaki 1984; Heggie & Hut 2003; Converse & Stahler 2011), and
this fact plays a key role in our evolutionary picture. Furthermore,
we have stressed the importance of disentangling the effects of mass
segregation from the phenomenon of core collapse.

5.2 Predicting cluster evolution

Our theoretical considerations should be useful for gauging the
evolutionary status of real clusters. Drawing the connection is not
entirely straightforward, since we do not observe directly any clus-
ter’s initial state or its evolution through time. The salient questions
are the following: Given a cluster’s present-day r, and N, can we
determine which evolutionary path it is on? If the system has not
recently undergone core collapse, which should be apparent obser-
vationally, will it do so in the future? Or will it evolve instead via
global expansion?

Answering these questions is easy for clusters presently located
below the collapse line. All such systems will globally expand until
they begin to be tidally disrupted. But what about clusters that
are currently above the line? For these, we first note that there is
another observable, global property of a cluster, its age. This may
be determined, in principle, from the distribution of member stars
in the HR diagram. It is useful to compare this observed age, Zps,
with a theoretical ‘relative age,” ¢,;. The latter is the time required
for the cluster to reach its present-day r, and N starting from the
collapse line. Clusters for which 7,,s > #; must have started below
the collapse line, and thus will globally expand in the future. Here,
we are assuming that the cluster is not currently being disrupted. If
it is, then its future history is clear but its prior history is uncertain,
as we shall discuss.

Our simulations allow us to obtain #; numerically. For a cluster
that starts close to the collapse line, 7, does not change appreciably
until # 2 30 Myr, at which point stellar mass loss begins to drive
expansion.'? Over the range of N we have explored for clusters near
the collapse line, r, then increases as a power law, r,oct*3. Using
this relation, we find

33

f ~ 30 ( v ) Myr, (14)

Teoll

where .. is the virial radius that defines the collapse line in equa-
tion (4).

10 Note that this period exceeds t,s = 20 Myr, the main-sequence lifetime
of the most massive star. A sizeable fraction of the cluster’s mass must be
lost for the cluster to begin expanding.
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Figure 8. In the left-hand panel, we show the tidal disruption line in the r,— N plane, for Rg = 0.5 kpc. We also indicate the initial conditions and results of
our two simulations using this smaller Galactocentric radius. The cluster with N = 8096 and ry = 3.0 pc (left cross) disrupts in a few dynamical times. In the
right-hand panel, we show (thin black line) the evolution of the central surface density N/, for a second cluster that is above the collapse line (right cross in the
left-hand panel). Its initial conditions place this system close enough to the tidal line that it undergoes global expansion as it disrupts. We also show (thick red
line) the decline of the cluster mass M. due to tidal stripping. We again measure time relative to #.|, the initial relaxation time.

Table 2. Open cluster sample.

Name N o rv  Ref
(kms™h  (pc)

Hyades 550 0.30 2.5 1
Pleiades (M45) 800 0.36 44 2
Praesepe 800 0.67 0.87 3,4

NGC 2168 (M35) 3059 0.65 2.6 5,6
NGC 188 1050 0.41 10. 7,8

Refs: 1. de Bruijne, Hoogerwerf & de Zeeuw (2001),
2. Raboud & Mermilliod (1998), 3. Khalaj & Baum-
gardt (2013), 4.Madsen, Dravins & Lindegren (2002),
5. Kharchenko et al. (2012), 6. Geller et al. (2010), 7.
Platais et al. (2003), 8. Geller et al. (2008).

We previously described the global evolution of clusters starting
above and below the collapse line. In both cases, there is a simi-
lar period of stasis followed by power-law growth (recall Fig. 5).
Eventually, however, the cluster radius peaks and then declines as
a result of tidal stripping. Clusters starting from different initial
conditions can thus traverse the same point in the »,—N plane. For
a cluster that is actively being disrupted, the relative time #; is not
useful, and the system’s prior history is hard to reconstruct. In some
cases, disruption is evident observationally by the presence of tidal
streamers (e.g. Odenkirchen et al. 2003). The past history of such
systems might be elucidated by studying their internal structure,
including the degree of mass segregation.

5.3 Open and globular clusters

Let us now apply these considerations to real systems, starting with
open clusters. At present, the number of open clusters with secure
values of r, is quite small. The difficulty here is an accurate deter-
mination of the mean velocity dispersion ¢, which is easily con-
taminated by binaries for clusters with intrinsically low dispersions.
Table 2 shows the modest result of our own literature search.
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Figure 9. Distribution of observed open clusters (squares) and globular
clusters (circles) in the ry— N plane. Data for the open clusters are collected
in Table 2. Data for the globular clusters were derived from Harris (1996,
Revision 2010). The lower, solid curve is the collapse line. Clusters lying
above the upper, dashed curve have #; exceeding the Hubble time #y.

In Fig. 9, we plot this handful of open clusters in the ,—N plane
(squares), as well as a much larger sample of globular clusters (filled
circles), to be discussed presently. Here, we have not displayed the
tidal disruption line. At least one of the open clusters (NGC 188)
has a Galactocentric radius quite different from ours, as do most of
the globular clusters. In addition, many of the latter lie well outside
the Galactic plane, so that our approximate form of the gravitational
potential (and thus r,) is inappropriate.
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Only two open clusters in our current sample lie above the col-
lapse line: the Pleiades and NGC 188. The former is barely over the
line, and application of equation (14) yields #; = 40 Myr. Since this
figure is less than the current age, 7,5 = 120 Myr (Basri, Marcy &
Graham 1996), we conclude that the Pleiades started below the line
and will never undergo core collapse. Converse & Stahler (2010)
numerically reconstructed the history of this system in detail. They
indeed found that it began with a smaller size, r, & 3 pc, and is fated
to globally expand until the point of tidal disruption.

An open cluster much farther above the collapse line is NGC
188. In this case, we find #; = 800 Myr. This number is to be
compared with the empirical age of #,,, = 6.2 Gyr (Meibom et al.
2009), which makes this one of the oldest open clusters in the
Galaxy. Since fy,s > 11, it might appear once more that the cluster
began below the collapse line. NGC 188 could have started with
ry = 2 pc and swelled to its current size in the time 7,5, assuming its
population remained constant. On the other hand, Casetti-Dinescu
etal. (2010) detected an associated tidal streamer. If NGC 188 began
with a significantly higher N and is now disrupting, then its original
location in the r,— N plane is uncertain, as is its fate.

Let us turn finally to globular clusters. The determination of r,
is now more straightforward, since the relatively small fraction of
binaries cannot appreciably alter the o-value observed in the clus-
ters’ spatially unresolved inner regions. In Fig. 9, we have placed in
the r,— N plane 55 systems whose parameters we obtained from the
Harris (1996, Revision 2010) catalogue, after assuming a number-
to-light ratio of 2. Virtually all the clusters now lie above the col-
lapse line. However, it requires further examination to determine
their future evolution.

Suppose we set ¢, equal to the Hubble time, #;. The corresponding
line lies parallel to and above the collapse line in the plane. All
clusters lying above this line necessarily have 7.5 < #;, and thus
will go through core collapse, if they have not done so already.'’
One example is 47 Tuc, an especially large and massive cluster with
ry/feon = 8.9 and t; = 41 Gyr. The latter value naturally exceeds
tobs = 13 Gyr (Dotter et al. 2010). A second example, with nearly
the same 7,,s-value, is NGC 7078 (M15). Gebhardt et al. (2000)
carefully corrected for the cluster’s rotation to obtain o, and we use
their figure to find #; = 26 Gyr. In this case, the system has already
undergone core collapse relatively recently (Dull et al. 1997).

Some of the smaller globular clusters that lie closer to the collapse
line may have begun below it. Individual systems require study on
a case by case basis. There is also a clear need to improve the
data on open clusters, so that their evolution can be more fully
understood. So too should the origin and fate of massive systems in
the Galactic plane, such as Westerlund I (for a review, see Portegies
Zwart, McMillan & Gieles 2010). We leave these tasks to future
investigators.
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