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ABSTRACT
Many ultracompact H II regions exhibit a cometary morphology in radio continuum emission.
In such regions, a young massive star is probably ablating, through its ultraviolet radiation,
the molecular cloud clump that spawned it. On one side of the star, the radiation drives an
ionization front that stalls in dense molecular gas. On the other side, ionized gas streams
outwards into the more rarefied environment. This wind is underpressured with respect to the
neutral gas. The difference in pressure draws in more cloud material, feeding the wind until
the densest molecular gas is dissipated. Recent, time-dependent simulations of massive stars
turning on within molecular gas show the system evolving in a direction similar to that just
described. Here, we explore a semi-analytic model in which the wind is axisymmetric and
has already achieved a steady state. Adoption of this simplified picture allows us to study the
dependence of both the wind and its bounding ionization front on the stellar luminosity, the
peak molecular density and the displacement of the star from the centre of the clump. For
typical parameter values, the wind accelerates transonically to a speed of about 15 km s−1, and
transports mass outwards at a rate of 10−4 M� yr−1. Stellar radiation pressure acts to steepen
the density gradient of the wind.

Key words: stars: early-type – stars: formation – ISM: clouds – H II regions – ISM: jets and
outflows.

1 IN T RO D U C T I O N

1.1 Observational background

An ultracompact H II (UCHII) region is one of the earliest signposts
for the presence of a young, massive star (for reviews, see Church-
well 2002 and Hoare et al. 2007). While the star itself is still too
embedded in its parent molecular cloud to be detected optically, it
heats up surrounding dust. A small region, some 1017 cm in ex-
tent, glows brightly in the far-infrared. Ionization of ambient gas
also creates free–free emission in the radio continuum, with elec-
tron densities in excess of 104 cm−3 and thus emission measures of
107 pc cm−6 or more. It is through this radio emission, relatively
minor in the overall energy budget, that UCHII regions have been
classified morphologically.

In their pioneering radio interferometric survey, Wood & Church-
well (1989) found that 30 per cent of the spatially resolved regions
have a cometary shape (see also Kurtz, Churchwell & Wood 1994;
Walsh et al. 1998). One sees a bright arc of emission filled in by
an extended, lower intensity lobe that fades away from the arc. OH
masers may be found along the bright rim. Other UCHII regions
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exhibit only the emission arc; presumably, the interior lobe in these
cases is undetectably faint. Still other classes identified by Wood
& Churchwell (1989) include: spherical, core-halo (a bright peak
surrounded by a fainter envelope), shell (a ring of emission) and
irregular (multiple emission peaks). All told, the cometary mor-
phology is the most common one found, and needs to be explained
by any viable theoretical model.

Spectral line studies have been used to probe the kinematics
of these regions. Observations of radio recombination lines (e.g.
Afflerbach et al. 1996; Kim & Koo 2001), and infrared fine-structure
lines (e.g. Zhu et al. 2005) reveal large line-widths, indicative of
supersonic flow. In cases where the flow can be spatially resolved,
one also sees a velocity gradient. This gradient is steepest in the
‘head-to-tail’ direction (Garay, Lizano & Gomez 1994; Garay &
Lizano 1999).

Very often, the observed peak in radio continuum or OH maser
emission, either of which effectively locates the star, does not co-
incide with the peak in molecular lines or submillimetre contin-
uum emission, which trace the densest molecular gas and dust (e.g.
Mueller et al. 2002; Thompson et al. 2006). This gas is located
within infrared dark clouds, currently believed to be the birth sites
of all massive stars (Beuther et al. 2007). The clumps within these
clouds have typical sizes of 1 pc, number densities of 105 cm−3 and
masses of about 104 M�; some qualify as hot cores (Hofner et al.
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2000; Hoare et al. 2007). The offset of the peak radio emission of
the UHCII region from the centre of this clump is typically a few
arcseconds, corresponding to approximately 0.1 pc for a distance
of 1 kpc. Both the cometary morphology and the acceleration of
ionized gas are likely related to this physical displacement, as was
first emphasized by Kim & Koo (2001).

1.2 Previous models and present motivation

The foregoing observations, taken together, show convincingly that
the cometary structures represent ionized gas accelerating away
from the densest portion of the nearby cloud material. Theorists
have long considered photoevaporating flows created by a massive
star illuminating one face of a cloud (Kahn 1954; Oort & Spitzer
1955). The most well-studied classical H II region of all, the Orion
nebula, is a prime example of the resulting ‘blister’, here formed by
the massive star θ1 C on the surface of the Orion A molecular cloud
(Zuckerman 1973). A tenuous, hemispherical body of ionized gas
surrounds θ1 C and the other Trapezium stars, and is flowing away
from the background cloud.

When massive stars are still deeply embedded in the densest
portion of their parent cloud, it is not obvious how such photoe-
vaporating flows can be maintained. Wood & Churchwell (1989)
pointed out that the small size of UCHII regions suggests a brief
dynamical lifetime. If they undergo pressure-driven expansion at
∼10 km s−1, they will expand to a size greater than 0.1 pc in roughly
104 yr, or one percent of the lifetime of the host star. In reality, some
10 per cent of O stars are associated with UCHII regions, suggesting
that the lifetime of these regions is larger by an order of magnitude.
Confinement by thermal pressure alone would result in an emis-
sion measure even higher than is observed (Xie et al. 1996). In the
context of cometary structures, this venerable ‘lifetime problem’
raises a fundamental question. What reservoir of matter can feed
the ionized flows over a period of 105 yr?

Hollenbach et al. (1994) suggested that the star may be photoe-
vaporating its own accretion disc. When ultraviolet radiation from
a massive star impinges on the disc, gas streams off at the sound
speed, at least in that outer region where this speed exceeds the local
escape velocity. Lugo, Lizano & Garay (2004) have analysed this
launching process in more detail. The outer accretion disc radius
of approximately 1015 cm is much smaller than the 1017 cm size of
UCHII regions. Thus, while the model views a disc as the ultimate
source of matter for the ionized flow, it does not address the flow’s
cometary morphology.

One possibility is that the prominent arc represents the shock
interface between a high-velocity stellar wind and the parent cloud.
Massive stars indeed generate, through radiative acceleration, winds
with terminal velocities of about 1000 km s−1. If the star itself
moves through the cloud at supersonic speed, e.g. 20 km s−1, then
the curved bowshock has the right form (van Buren et al. 1990;
Mac Low et al. 1991). Moreover, a star that is moving towards
the observer creates a ‘core-halo’ structure, also commonly seen.
The relatively fast stellar velocity, however, implies that the whole
interaction would last for a few times 104 yr if the star indeed
travels through a molecular clump 1 pc in size. Consequently, this
bowshock model may fall prey to the lifetime problem. Another
concern is that massive stars, with the exception of runaway objects,
do not move at such high speeds relative to parent molecular gas.
For instance, the Trapezium stars in the Orion nebula cluster have
a velocity dispersion of a few km s−1 (Fűrész et al. 2008).

Suppose instead that the embedded star is not moving with re-
spect to the densest gas, but is displaced from it, as is suggested

by the observations. Then one side of its expanding H II region
eventually erupts into the surrounding low-density medium. Such
a ‘champagne-flow’ model was first explored by Tenorio-Tagle
(1979), Bodenheimer, Tenorio-Tagle & Yorke (1979) and Whit-
worth (1979) to explain asymmetric, classical H II regions. The high
internal pressure of the H II region accelerates the ionized gas to
supersonic speed away from the ambient cloud, whose density was
taken to be 103 cm−3. Meanwhile, the ionization front steadily ad-
vances at several km s−1 into this cloud, generating volumes of
ionized gas several parsecs in diameter.

Another model, that of the mass-loaded wind (Dyson 1968),
invokes champagne-type dynamics in combination with a stellar
wind. The idea is that the wind, perhaps in combination with the
stellar radiation field, ablates the cloud, entraining the gas within
it. Pressure gradients may then accelerate the gas in a champagne
flow. In some versions of the model, the new mass originates in
dense globules that are continually being ionized (Lizano et al.
1996; Williams, Dyson & Redman 1996; Redman, Williams &
Dyson 1998). While successful in explaining the morphologies and
lifetimes of UCHII regions, the model does not address in detail how
the dense globules enter the ionized flow. Thus, the mass-loading
prescription adopted was somewhat ad hoc.

Keto (2002a) modelled the growth of an H II region inside a
Bondi accretion flow. If the ionization front is located inside the
Bondi radius rB ≡ GM∗/2a2

I , where M∗ is the stellar mass and aI

the ionized sound speed, then gas simply crosses the ionization front
and continues towards the star as an ionized accretion flow. Until
its size reaches rB, the H II region can expand only as the ionizing
flux from the star increases along with the stellar mass. The H II

region then exists in steady state, continuously fed by the molecular
accretion. Thus, the lifetime of the H II region is tied to the accretion
time-scale of the star.

Observations of the UCHII region around the cluster of massive
stars G10.6−0.4 indicate that this kind of molecular and ionized ac-
cretion could be occurring (Keto 2002b). Subsequent observations
of the same cluster (Keto & Wood 2006) also show an asymmetric
bipolar outflow of ionized gas. These observations motivated Keto
(2007) to develop a model in which inflow and outflow occur si-
multaneously in a rotationally flattened geometry. The ionization
creates an H II region elongated perpendicular to the accretion flow.
Where the ionization extends beyond rB, the H II region can ex-
pand hydrodynamically as a pressure-driven Parker wind (see also
McKee & Tan 2008). Along the equatorial plane, dense molecular
gas continues to flow into the H II region. One of the motivations
of this paper is to detail exactly how an ionized outflow may be
supplied by inflow of molecular gas, although here we consider a
mechanism to draw in this gas that is separate from the gravitational
attraction of the star.

Another model combining ionization and gravitational accre-
tion was that of Mac Low et al. (2007), who suggested that an
UCHII region may form as a gravitationally collapsing substructure
within a larger, expanding H II region. More detailed simulations by
Peters et al. (2010a,b) found that an UCHII region embedded in
an accretion flow rapidly changes morphologies through all the ob-
served types, and could be sustained by the addition of infalling
gas from the parent cloud. The collapsing ionized gas in their sim-
ulations creates bipolar molecular outflows, as are observed to ac-
company some UCHII regions (Beuther & Shepherd 2005). Peters
et al. (2011) also claimed that magnetic pressure might play a sig-
nificant role in confining UCHII regions. On the other hand, Arthur
et al. (2011) performed their own radiation-magnetohydrodynamic
simulation of an H II region expanding into a turbulent cloud.
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They found that magnetic pressure plays only a minor role in
confinement.

Other recent simulations have combined various elements in the
original models to account for the proliferating observational results
now becoming available. Henney et al. (2005) simulated a cham-
pagne flow in which the ionization front is stalled as it climbs a
density gradient into a neutral cloud supported by turbulent pres-
sure. Comeron (1997) explored the coupled roles of champagne
flows and stellar winds. Finally, Arthur & Hoare (2006) revised the
bowshock idea by introducing a finite but modest stellar velocity
with respect to the cloud.

In this paper, we pursue a different goal. Accepting that every
cometary UCHII region is an ionized flow, we elucidate the basic
issue of how such a flow may continue to draw in gas from the neutral
cloud. We agree with previous researchers that the momentum of the
ionized flow is not supplied by the star, but by the thermal pressure
gradient of the gas itself. A key result of our own study will be to
demonstrate that the expansion of this flow causes the ionized gas
to become underpressured with respect to the neutral cloud. This
pressure differential draws neutral material from the cloud into the
champagne flow in a self-sustaining manner.

We assume at the outset that the flow is quasi-steady, as was
found in the late stages of the simulations of Henney et al. (2005)
and Arthur & Hoare (2006). This basic simplification allows us to
rapidly explore parameter space, as we detail below. Thus, we can
assess how well our rather minimal set of physical assumptions
explains the basic characteristics of cometary UCHII regions. Our
quasi-one-dimensional model does not allow us to include evacua-
tion by a stellar wind, but we do account for the effect of radiation
pressure and show that it is appreciable.

In Section 2 below, we introduce our steady-state model for
cometary UCHII regions. Section 3 develops the equations gov-
erning the density and velocity of the ionized flow. In Section 4, we
recast these equations in non-dimensional form and then outline our
solution strategy. Section 5 presents our numerical results, and Sec-
tion 6 compares them to observations. Finally, Section 7 indicates
fruitful directions for future investigations.

2 STEA DY-STATE MODEL

2.1 Physical picture

We idealize the molecular cloud as a planar slab, in which the cloud
density peaks at the mid-plane (see Fig. 1). The choice of planar ge-
ometry is made for computational convenience and is probably not a
realistic representation of the clouds of interest. However, our qual-
itative results are not sensitive to the adopted cloud density profile,
as we verify explicitly in Section 5 below. We envision a massive
star embedded within this cloud, but offset from the mid-plane, in
accordance with the observations mentioned previously. This off-
set creates an asymmetric, ionized region of relatively low density.
Towards the cloud mid-plane, this ionized gas resembles a classical
H II region. Its boundary, a D-type ionization front, advances up the
density gradient. In the opposite direction, the front breaks free and
gas streams away supersonically. The pressure gradient within the
ionized gas creates an accelerating flow away from the cloud. Apart
from the higher density cloud environment, our model is identical
in spirit to the champagne flows proposed in the past.

Once the velocity of the advancing ionization front falls signif-
icantly below the ionized sound speed, the flow becomes steady-
state. We adopt this steady-state assumption in our model, and as-
sume that the structure of the background cloud is evolving over a

Figure 1. Our flow schematic. A massive star is situated to one side of an
initially neutral cloud. It creates, as in the original champagne model, an
asymmetric H II region of relatively low density. Towards the mid-plane, the
ionization front is stalled by rising cloud density. In the opposite direction,
the front has broken free. The high pressure of ionized gas creates an ac-
celerating flow away from the densest gas. At the base of the ionized flow,
the pressure has been relieved sufficiently such that the neutral cloud gas is
slightly overpressured with respect to the ionized gas.

long time-scale compared to the ionized sound crossing time. In the
simulations of Arthur & Hoare (2006), a steady flow is approached
some 105 yr after the massive star turns on. By this point, the ion-
ization front has virtually come to rest in the frame of the star. We
will later determine more precisely the speed of the ionization front
in our model and show that it is consistent with the steady-state as-
sumption. The shock that originally formed ahead of the ionization
front, as it transitioned from R-type to D-type, has by now advanced
deep into the cloud and died away.

The H II region facing the cloud mid-plane expands, albeit slowly.
While the ionized gas is optically thick to ultraviolet radiation from
the star, some does leak through and strikes the cavity wall within
the neutral cloud. Additional gas is thus dissociated and ionized, and
streams off the wall to join the outward flow. While the injection
speed at the wall is subsonic, the thermal pressure gradient within
the ionized gas accelerates it to supersonic velocity. Both this flow
and the advancing front erode the cloud, whose structure gradually
evolves in response.

2.2 Tracing the ionization front

We will always consider systems that possess azimuthal symmetry.
We establish a spherical coordinate system whose origin is at the
star. The polar direction, θ = 0, coincides with the central axis
of the flow depicted in Fig. 1. Let N ∗ denote the total number
of ionizing photons per time generated by the star. If we further
assume ionization balance within the volume of the ionized cavity,
and make use of the on-the-spot approximation, then the ionizing
radiation extends out to the cavity wall rf(θ ), given implicitly by

N∗
4 π

= αB

∫ rf

0
dr r2 [nI(r, θ )/2]2 + r2

f F∗ , wall(θ ) . (1)

Here, αB is the case B recombination coefficient (Osterbrock 1989,
chapter 2). We have pulled this factor out of the integral since it
depends only on the ionized gas temperature, which we assume to
be spatially uniform. The term nI is the number density of ionized
gas, including both protons and electrons. For simplicity, we have
assumed that the composition of the gas is pure hydrogen, so the
number of free protons is equal to the number of free electrons and
both of these number densities are equal to nI/2. Finally, F∗ , wall(θ )
is that portion of the star’s ionizing photon flux which escapes the
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H II region and strikes the wall of the cavity. This remnant flux is
critical for maintaining the flow.

But how important is the second term of equation (1) in a quan-
titative sense? Each photon striking the front ionizes a hydrogen
atom, itself already dissociated from a hydrogen molecule, thereby
creating a proton and an electron. Let f be the number flux of pro-
tons and electrons injected into the flow at each position along the
front. Thus, F∗ , wall = f/2 at each angle θ , and we may write the
foregoing equation as

N∗
4 π

= αB

∫ rf

0
dr r2 (nI/2)2 + r2

f f

2
. (2)

The flux f is of the order of nI aI, where nI is now a typical value of
the ionized gas number density. If rf in equation (2) now represents
the size scale of the flow, then the ratio of the second to the first
right-hand term in this equation is of the order of

aI

αB nI rf
∼

(
aI

acl

)3
acl

αB ncl rf
, (3)

where acl and ncl are the effective sound speed and number density
within the cloud (see below). Here, we have assumed that the ionized
material is at least in rough pressure balance with the cloud, so that
nI a

2
I ≈ ncl a

2
cl. For the dense clumps that harbour young massive

stars, ncl ∼ 105 cm−3 and acl ∼ 2 km s−1 (Garay & Lizano 1999).
Further using rf ∼ 1017 cm, aI ∼ 10 km s−1 and αB ∼ 10−13 cm3 s−1,
we find that the ratio of terms is of the order of 10−2. In practice,
therefore, we neglect the second term entirely.1 We trace the ion-
ization front by finding that function rf(θ ) which obeys the approx-
imate, but quantitatively accurate relation,

N∗
4 π

= αB

∫ rf

0
dr r2 (nI/2)2 . (4)

2.3 Cloud density and gravitational potential

Even within our simplifying assumption of axisymmetry, it would
be a daunting task to trace a fully two-dimensional flow. While
we accurately follow the ionization front bounding the flow in two
dimensions, we further assume that the density and velocity are
only functions of z. In this quasi-one-dimensional model, we are
effectively averaging the ionized density nI and velocity u laterally
at each z-value. This simplification is innocuous in regions where
the lateral change in these quantities is relatively small. It is more
problematic when the ionized gas becomes overpressured with re-
spect to the ambient cloud. Luckily, most of the radio emission
comes from the densest portion of the flow, well before this point
is reached. Hence, our model produces reasonably accurate results
when predicting observed emission measures.

Turning to the cloud itself, we assume it to be self-gravitating,
with an internal supporting pressure arising from turbulence. Hence,
we do not consider the possibility that the object is in a state of col-
lapse. We crudely model the turbulence by adopting an isothermal
equation of state, characterized by an effective sound speed acl. In
our model, it is only the mass of the cloud that affects the flow grav-
itationally. That is, we neglect both the self-gravity of the ionized
gas, and the pull of the massive star. The latter force is negligible

1 In the terminology of Henney (2001), our photoevaporation flow is recom-
bination dominated. If the second right-hand term in equation (2) were
relatively large, the flow would be advection dominated. According to
Henney (2001), knots in planetary nebulae fall into this category.

outside the Bondi radius RB ≡ G M∗/2 a2
I , where M∗ is the stellar

mass. For representative values M∗ = 20 M� and aI = 10 km s−1,
RB = 90 au, much less than the size of UCHII regions.

Our cloud is an isothermal self-gravitating slab whose mid-plane
is located at z = −H∗ (see Fig. 1). Solving the equations of hydro-
static equilibrium along with Poisson’s equation yields the neutral
cloud density ncl and the gravitational potential �cl

ncl = n0 sech2

(
z + H∗

Hcl

)
, (5)

�cl = −a2
cl ln sech2

(
z + H∗

Hcl

)
. (6)

Here, n0 is the mid-plane number density of hydrogen molecules,
each of mass 2 mH and Hcl is the scale thickness of the slab:

Hcl ≡
[

a2
cl

2 π G (2 n0 mH)

]1/2

. (7)

A representative value for n0 is 105 cm−3. Combining this with a
turbulent velocity dispersion of acl = 2 km s−1 yields a Jeans mass
of the order of 102 M�, far less than the 104 M� clumps in giant
molecular clouds spawning massive stars and their surrounding
clusters. We stress again that our cloud is a relatively small fragment
containing the newborn star. In our view, it is the high density of
this gas that determines the morphology of the UCHII region, and
the dispersal of the clump that sets the characteristic lifetime.

2.4 Radiation pressure

Quantitative modelling of H II regions, and UCHII regions in par-
ticular, has generally neglected the dynamical effect of radiation
pressure from the massive star (see, however, Krumholz & Matzner
2009). For the very dense environments we are now considering,
the radiative force has substantial influence on the ionized flow, as
we shall demonstrate through explicit calculation.

Suppose the star emits photons with mean energy ε. Those travel-
ling in the direction θ with respect to the central axis carry momen-
tum (ε/c)cos θ in the z-direction. If we assume that the gas is in ion-
ization equilibrium, then the number of photons absorbed per unit
volume of gas equals the corresponding volumetric rate of recombi-
nation, (nI/2)2αB. The assumption of ionization equilibrium is justi-
fied because the typical recombination time, trec ∼ (nIαB)−1 ∼ 108 s,
is much less than the flow time tflow ∼ rf/aI ∼ 1011 s.

The radiative force per volume is the product of the pho-
ton momentum and the volumetric rate of ionization, or
(ε/c)cos θ (nI/2)2αB. To obtain frad, the radiative force per unit
mass of gas, we divide this expression by the ionized mass den-
sity, mHnI/2. We thus find

frad = ε 〈cos θ〉 nI αB

2 mHc
. (8)

This expression is consistent with that given in Krumholz & Matzner
(2009, section 2) if we add the condition of ionization balance. Note,
finally, that ε in equation (8) is implicitly a function of N∗, a fact
that we shall use later.

In accordance with our quasi-one-dimensional treatment, we have
laterally averaged cos θ at fixed z. Explicitly, this average, weighted
by the cross-sectional area is

〈cos θ〉 = 2 η
z2

R2

⎛
⎝

√
1 + R2

z2
− 1

⎞
⎠ . (9)
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Here, R(z) is the cylindrical radius from the central axis to the
ionization front at each z, and η = +1 or −1 for positive and
negative z, respectively. At z = 0, the level of the star, we set
〈cos θ〉 = 0. At the base of the flow, 〈cos θ〉 = −1. We define the
distance from this point to the star as Hb ≡ rf (π), and show it in
Fig. 1.

3 FLOW EQUATIO N S

3.1 Mass and momentum conservation

To obtain laterally averaged dynamical equations, consider a con-
trol volume of height �z spanning the flow, as pictured in Fig. 2.
This volume has cylindrical radius R and R + �R at its lower and
upper surfaces, respectively. Let uI(z) be the average flow speed
in the z-direction. Similarly, let ninj and vinj represent the number
density and speed, respectively, of ionized gas being injected into
the flow just inside the ionization front. Then, the requirement of
mass conservation is

d

dt
(π R2 �z nI) = π R2 nI uI − π(R + �R)2(nI + �nI)(uI + �uI)

+ 2 π R
√

�R2 + �z2 ninj vinj . (10)

Here, the first two terms of the right-hand side are the rate of mass
advection through the bottom and top layers of the control volume,
respectively. The final right-hand term is the rate of mass injection.
We assume that the injected flow direction is normal to the ionization
front. Henceforth, we will drop the subscript I when referring to the
density and velocity of the ionized flow.

Under our steady-state assumption, the left-hand side of equation
(10) vanishes. Dividing through by �z, and taking the limit �z → 0,
leads to

d

dz
(R2 n u) = 2 R

√
1 +

(
dR

dz

)2

ninj vinj . (11)

We will later derive an expression for vinj from the jump conditions
across the ionization front and show that this velocity is subsonic,
i.e. vinj < aI at any z. Although our derived vinj is properly measured
in the rest frame of the ionization front, we will show in Section 3.2
that the front is moving very slowly compared to aI. Thus, vinj is
also, to a high degree of accuracy, the speed of the injected gas in
the rest frame of the star.

Figure 2. Control volume diagram for a segment of the ionized flow. The
trapezoidal section displayed here, represents a meridional slice of the ion-
ized flow – one should imagine rotating this diagram about the central
vertical symmetry axis in order to generate the represented volume.

Another crucial assumption we will make is that ninj = n, i.e.
the injected density is the same as the laterally averaged flow value
at any height. This condition seems to hold at least approximately
in the simulations of Arthur & Hoare (2006), and is physically
plausible when one considers that lateral density gradients will tend
to be smoothed out if the velocity components in that direction are
subsonic. After making this assumption, we are left with

d

dz
(R2 n u) = 2 R

√
1 +

(
dR

dz

)2

n vinj . (12)

Requiring conservation of z-momentum for the control volume
leads to

d

dt
(π R2 �z n u) = π R2 n u2 − π(R + �R)2(n + �n)(u + �u)2

+ 2 π R n v2
inj �R + π R2 n aI

2 − π (R + �R)2(n + �n)aI
2

+ 2 π R �R2 + �z2 n aI
2�R − π R2 �z n

d�cl

dz

+ π R2 �z n frad, (13)

where �cl is the gravitational potential from equation (6) and frad is
the radiative force per mass from equation (8). Included are terms
representing both static pressure and the advection of momentum
through the top, bottom and sides of the control volume. For the
advective terms, we have again replaced ninj by n. The geometric
factor

√
1 + (dR/dz)2 present in equation (12) disappears because

its inverse is used when projecting the injected momentum into the
z-direction. We apply the steady-state condition and divide equation
(13) through by πR2 n �z. After taking the �z → 0 limit and
combining with equation (12), we obtain

u
du

dz
= −a2

I

n

dn

dz
− d�cl

dz
+ frad + 2

R

dR

dz
v2

inj

− 2

R

√
1 +

(
dR

dz

)2

vinj u . (14)

This equation resembles the standard Euler momentum equation in
one dimension, but has two additional terms. The first accounts for
injection of z-momentum via ram pressure. The second represents
the inertial effect of mass loading.

3.2 Jump conditions across the ionization front

In the rest frame of the ionization front, upstream molecular gas
approaches at speed v′

cl and leaves downstream as ionized gas,
at speed v′

inj. We assume that the intermediate photodissociation
region, consisting of neutral hydrogen atoms, is geometrically thin.2

Conservation of mass and momentum across the ionization front is
expressed in the jump conditions

(1/2) n v′
inj = 2 ncl v

′
cl (15a)

(1/2) n
(
a2

I + v′
inj

2
)

= 2 ncl

(
a2

cl + v′
cl

2
)

. (15b)

The factors of 1/2 and 2 in both equations account for the fact
that each hydrogen molecule has a mass of 2 mH, while each particle

2 Roshi et al. (2005, section 4.2) estimate the PDR thickness in G35.20−1.74
to be of the order of 10−4 pc.
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of ionized gas has a mean mass of mH/2. We solve equation (15a)
for v′

cl:

v′
cl = 1

4

n

ncl
v′

inj , (16)

and use this result in equation (15b) to derive an expression for v′
inj:

v′
inj = aI

√
16n2

cl/β − 4n ncl

4n ncl − n2
, (17)

where β ≡ a2
I /a

2
cl � 1. As long as the ionized gas is underpres-

sured with respect to the neutral molecular gas, β n < 4 ncl, and the
quantity inside the square root in equation (17) is positive, guaran-
teeing a solution for v′

inj. Using this inequality, equation (16) tells
us that v′

cl < v′
inj/β . In all our solutions, v′

inj is subsonic. Thus, the
ionization front moves relatively slowly into the cloud, and we may
set the lab frame injection velocity vinj equal to v′

inj. Since we know
ncl at all z, equation (17) gives us vinj as a function of z and n, which
we may use in the mass and momentum equations (12) and (14).

3.3 Decoupled equations of motion

The mass and momentum conservation equations can be combined
to solve separately for the derivatives of the velocity and density.
These decoupled equations are

du

dz
=

(
1

a2
I − u2

) ⎡
⎣ − 2 u

1

R

dR

dz

(
a2

I + v2
inj

)

+ 2 vinj
1

R

√
1 +

(
dR

dz

)2 (
a2

I + u2
) + u

d�cl

dz
− u frad

⎤
⎦(18)

dn

dz
=

(
1

a2
I − u2

) ⎡
⎣2 n

1

R

dR

dz

(
u2 + v2

inj

)

− 4 n
1

R

√
1 +

(
dR

dz

)2

u vinj − n
d�cl

dz
+ n frad

⎤
⎦ . (19)

The right-hand sides of both equations have denominators that
vanish when u = aI. Thus, we must take special care when inte-
grating through the sonic point, as is also true in steady-state winds
and accretion flows of an isothermal gas. If we were to ignore the
terms relating to mass injection, radiation pressure and self-gravity,
then the sonic transition would occur when dR/dz = 0, as in a
de Laval nozzle. In our case, the extra terms cause the sonic transi-
tion to occur at other locations.

4 N O N - D I M E N S I O NA L I Z AT I O N A N D
S O L U T I O N S T R AT E G Y

4.1 Characteristic scales

A representative ionizing photon emission rate is 1049 s−1, which
corresponds to an O7.5 star (Vacca, Garmany & Shull 1996). We
denote this emission rate by N49. We define a non-dimensional
emission rate normalized to that value:

Ñ∗ = N∗
N49

. (20)

To find characteristic density- and length-scales for the flow,
consider first Hcl, the scaleheight of the neutral cloud. According to

equation (7), this quantity depends on both the effective sound speed
acl, which we fix at 2 km s−1, and on the mid-plane cloud density n0,
which will be a free parameter. A second length of importance is the
Strömgren radius of fully ionized gas of uniform particle number
density n, given by

RS ≡
(

3N∗
4παB(n/2)2

)1/3

. (21)

Note the appearance of n/2 in our expression. This is the num-
ber density of either protons or electrons, the species that actually
recombine.

For a cometary flow to exist at all, it must be true that RS ∼ Hcl.
If RS 
 Hcl, the H II region would be trapped within the cloud and
unable to generate the observed flow. If, on the other hand, RS � Hcl,
the ionized region would be free to expand in all directions, again
contrary to observation. For the purpose of defining a characteristic
ionized density-scale, we first set N∗ = N49 in equation (21). We
then set n0 = βn/4 in equation (5), and solve for the ionized density
n that satisfies the relation Hcl = RS. We label this density n49, and
find that it can be expressed as

n49 = 9π β3

(
G mH

a2
cl

)3 (N49

αB

)2

= 1.4 × 104 cm−3 . (22)

We insert this value of n49 into equation (21) and set the resulting RS

equal to the characteristic length-scale Z49. We find for this length

Z49 = 1

3π β2

(
G mH

a2
cl

)−2 (N49

αB

)−1

= 0.18 pc . (23)

It is encouraging that our values for n49 and Z49 match typical
observations for UCHII regions (Churchwell 2002).

4.2 Non-dimensional equations

We first normalize all lengths by Z49:

r̃ ≡ r/Z49 (24a)

z̃ ≡ z/Z49 , (24b)

and all densities by n49:

ñ0 ≡ n0/n49 (25a)

ñ ≡ n/n49 . (25b)

Since the ionized flow is transonic, we normalize all velocities to
the ionized sound speed aI, which we fix at 10 km s−1:

ũ = u/aI . (26)

We introduce a non-dimensional expression for the force per
mass due to radiation pressure:

f̃rad ≡ frad

(
a2

I

Z49

)−1

. (27)

This non-dimensional quantity is the radiative force relative to that
from thermal pressure. Then, using equation (8) for frad, we have

f̃rad = 〈cos θ〉
(

ε/c

mH aI

) {
Z49/aI

[(n/2) αB]−1

}
. (28)

The second factor on the right is the ratio of the momentum of
an ionizing photon to the thermal momentum of a gas particle.
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The dynamics of ultracompact H II regions 1341

Figure 3. The variation of the radiative force coefficient γ defined in equa-
tion (30) with Ñ∗, the star’s ionizing photon emission rate, normalized to
1049 s−1.

The third factor is the ratio of the sound crossing time in the flow
to the local photon recombination time.

Since we are fixing the ionized sound speed, the only quantities
that vary with z in equation (28) are n and 〈cos θ〉.3 Thus, we are
motivated to write

f̃rad = γ ñ 〈cos θ〉 , (29)

where γ is also non-dimensional. After setting the right-hand sides
of equations (28) and (29) equal to each other, and making use of
equations (22), (23) and (25b), we find that γ can be expressed as

γ ≡ 3

2

(
L49

c

) (
a4

cl

G

)−1 (
ε

ε49

)
. (30)

Here, L49 ≡ N49 ε49 is the luminosity (in erg s−1) of a star of spectral
type O7.5, and ε49 is the mean energy of ionizing photons emitted
from such a star. We show in Appendix A that ε, and hence γ , is
a weak function of Ñ∗. The function γ (Ñ∗) is plotted in Fig. 3.
In summary, the three free parameters that we vary between calcu-
lations are ñ0, Ñ∗ and the star’s displacement from the mid-plane
ζ ≡ H∗/Z49.

We now summarize our non-dimensional equations. After drop-
ping the tilde notation for the rest of this section, the decoupled
equations of motion are

du

dz
=

(
1

1 − u2

) ⎡
⎣ − 2 u

1

R

dR

dz
(1 + v2

inj)

+ 2vinj
1

R

√
1 +

(
dR

dz

)2

(1 + u2) + u
d�cl

dz
− u n γ 〈cos θ〉

⎤
⎦

(31)

3 Strictly speaking, ε also varies with position. Higher energy photons have
a lower photoionization cross-section, and thus travel farther from the star
before they are absorbed, leading to a gradual hardening of the radiation with
increasing distance. In our wavelength-independent analysis, we ignore this
effect.

dn

dz
=

(
1

1 − u2

) ⎡
⎣2 n

1

R

dR

dz
(u2 + v2

inj)

− 4 n
1

R

√
1 +

(
dR

dz

)2

u vinj − n
d�cl

dz
+ n2 γ 〈cos θ〉

⎤
⎦.

(32)

The expression for 〈cos θ〉 is still given by equation (9) if we use
the appropriate non-dimensional lengths. From equation (17), the
injection velocity is

vinj =
√

16n2
cl/β − 4n ncl

4n ncl − n2
, (33)

where β is fixed at (10/2)2 = 25.
The non-dimensional cloud density and gravitational potential

are

ncl = n0 sech2

[
(z + ζ )

√
4 n0

β

]
, (34)

�cl = − 1

β
ln sech2

[
(z + ζ )

√
4 n0

β

]
. (35)

Finally, the simplified ray tracing equation (4) becomes

1

3
N∗ =

∫ rf (θ )

0
n2(z) r2 dr . (36)

4.3 Numerical method

The shape of the ionization front can be obtained through equation
(36), but only after the density n(z) is established. Since we do not
know this density a priori, we begin with a guessed function. We
then trace out the ionization front, and thus establish R(z). We next
calculate both n(z) and u(z) by integrating the coupled equations
(31) and (32). This procedure yields a new density distribution n(z)
which we use to retrace the locus of the ionization front, again using
equation (36). The process is repeated until convergence is reached.

To integrate equations (31) and (32), we must specify values
of n and u at the base of the flow, where z = R = 0. These two
initial values are not independent. We show in Appendix B that
u(−Hb) = vinj(−Hb), where vinj(−Hb) is the injection speed at the
base, as found from equation (33). Since we know ncl(−Hb) from
equation (34), vinj(−Hb) is solely a function of n(−Hb), and thus
u(−Hb) is too. In practice, therefore, we need only guess n(−Hb).
Also derived in Appendix B are expressions for du/dz and dn/dz

at the base, where the right-hand sides of equations (31) and (32)
have divergent terms.

What is the correct value of n(−Hb)? The right-hand sides of
both equations (31) and (32) have pre-factors that diverge when
u = 1. Thus, crossing the sonic point requires special care. For an
arbitrarily guessed n(−Hb), u(z) either diverges upwards or declines
towards zero as the sonic point is approached. This behaviour is a
generic feature of wind problems, and a bifurcation procedure is
often employed to pinpoint the physical flow. We use the method of
‘shooting and splitting’ (Firnett & Troesch 1974). Here, we repeat-
edly guess n(−Hb), and successive densities farther downstream,
until the velocity profile is established to within a preset tolerance.
Specifically, iterations continue until the range of this accurate pro-
file include u-values sufficiently close to 1, typically 0.98 or 0.99.
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1342 N. Roth, S. W. Stahler and E. Keto

To jump over the sonic point, we use the current values of du/dz

and dn/dz to perform a single first-order Euler integration step,
typically with a z-increment of 0.01–0.03, depending on the values
of the derivatives. Once we are downstream from the sonic point,
we revert to direct integration of equations (31) and (32).

A key feature of the flows we generate is that the density near
the base is low enough that the ionized gas is underpressured with
respect to the neutral cloud. The pressure drop causes neutral gas
to be drawn into the flow and thereby replenish it. Driven by a
combination of thermal and radiative forces, the flow accelerates.
Thus, its density falls, but the decline is mitigated by the continual
influx of fresh gas. On the other hand, the cloud density always
falls sharply (see equation 34). Eventually, ncl(z) reaches the value
βn(z)/4, at which point the ionized and neutral gas have equal
pressures. According to equation (33), no more neutral gas is drawn
into the flow beyond this point. In reality, the flow diverges laterally
and its density also falls steeply. We do not follow this spreading
process, but end each calculation at the point where the pressures
cross over.

5 R ESU LTS

5.1 Fiducial model characteristics

For our fiducial model, we set the three non-dimensional parame-
ters to: ñ0 = β/4; Ñ∗ = ζ = 1. The value of ñ0 is chosen so that
the cloud mid-plane is in pressure balance when the flow density ñ

is unity. Dimensionally, the mid-plane density is 8.8 × 104 cm−3,
the star’s photon emission rate is N∗ = 1 × 1049 s−1, and the star
is displaced from the mid-plane by H∗ = 0.18 pc. Fig. 4 shows the
converged shape of the ionization front for this case. The rapid flar-
ing of the base essentially reproduces the typical cometary shapes
observed. Of course, a more precise comparison is between the pre-
dicted and observed emission measures. Here, too, the qualitative
agreement is good, as we will later demonstrate.

The lowest dashed line in Fig. 4 represents the cloud mid-plane.
Note that the base of the ionization front lies slightly below it. We
have also displayed, as the middle dashed line, the sonic transition.
In this particular model, the flow speed reaches aI close to the
z-position of the star. This near match does not hold throughout
most of parameter space. For example, lowering the stellar emission
rate N∗ moves the sonic transition farther above the star. Finally, the
uppermost dashed line marks the height where the internal pressure

Figure 4. Converged ionization front shape for our fiducial UCHII region,
with the star’s position indicated. In this and succeeding figures, all physical
variables are displayed non-dimensionally. The lowest dashed line represents
the z-position of the cloud mid-plane. The middle dashed line represents the
z-position of the sonic point. Finally, the upper dashed line is the endpoint of
our solution, where the pressures of the ionized and neutral gas cross over.

Figure 5. Ionized gas density and velocity as a function of z-position for
our fiducial model.

of the flow overtakes that of the parent molecular cloud. In this case,
the cross-over point is about the same distance from the star as the
base of the flow. As explained previously, we end our calculation
at the cross-over point, and do not attempt to track the complex
dynamics of the flow as it continues to spread laterally and deposit
its momentum into the lower density surrounding gas. In any event,
there are fewer observational constraints on this more diffuse flow.

Fig. 5 shows the run of the density and velocity of the ionized
gas with z-position. The velocity displays a smooth sonic transition,
and a nearly constant acceleration throughout. The velocity at the
base is very close to zero, but this is not the case for other parameter
choices, as we will describe in the following section. As the velocity
rises, the density falls, creating a pressure gradient that works to
accelerate the flow.

To analyse more quantitatively the flow dynamics, it is helpful
to gauge the relative contributions of the various terms contributing
to the overall momentum balance. The non-dimensional version of
equation (14) is

u
du

dz
= −dn

dz
− d�cl

dz
+ frad + 2

R

dR

dz
v2

inj

− 2

R

√
1 +

(
dR

dz

)2

vinj u . (37)

Recall that the fourth and fifth right-hand terms represent, respec-
tively, the ram pressure from the injected gas and the retarding effect
of mass loading.

Fig. 6 plots all five right-hand terms as a function of z-position
in the flow. The injected ram pressure and mass loading dominate
at first, and nearly balance one another. Soon, however, the thermal
pressure gradient takes over and remains dominant thereafter. The
radiation force at first retards the flow, and is a minor contributor
to its acceleration above the star’s position. Finally, it is noteworthy
that the gravitational force is negligible for most of the flow.

5.2 Parameter variation

The top panel of Fig. 7 shows, how the shape of the converged
ionization front changes with the stellar photon emission rate N∗,
while the cloud mid-plane density n0 and stellar displacement from
the mid-plane ζ are held fixed at their fiducial values. In this case,
the variation is predictable. A higher photon emission rate allows
the ionizing photons to penetrate farther into the neutral cloud,
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The dynamics of ultracompact H II regions 1343

Figure 6. The magnitude of each of the terms in the momentum equation (37) as a function of z-position. The thermal pressure gradient, along with the ram
pressure from injection of ionized gas, act to accelerate the flow, while mass loading and the gravity of the parent cloud decelerate it. Radiation pressure mostly
acts to decelerate the flow, but for z > 0 it makes a small contribution towards accelerating it.

Figure 7. Effect of parameter variation on the shape of the ionization front. Within each panel, the star is located at (0,0). In this and subsequent graphs, the
fiducial model is indicated by a solid black line. For the entire study, β is set to 25.

in a manner similar to how the Strömgren radius of a spherical H II

region increases with emission rate. A larger luminosity also leads
to more flaring of the ionization front at large values of z.

We did not consider systems with photon emission rate
N∗ < 0.1 because, at those low luminosities, the fraction of the
star’s luminosity that is composed of ionizing photons drops rapidly.
We also found that, given our fiducial values of n0 and ζ , we could
not achieve transonic solutions with N∗ � 1. As can be seen from
the plot of velocity, u is already quite close to 0 forN∗ = 1. Attempt-
ing to raise the photon emission rate any higher without changing

the other parameters creates such a large ionized density near the
base that the flow is no longer underpressured with respect to the
cloud. It is possible to create flows with higher values of N∗ if, for
example, ζ is increased at the same time.

Generally, we find that the density profile of the ionized flow
mimics that of the neutral cloud. Fig. 8 shows how the density and
velocity profiles vary when the stellar luminosity is changed. The
flow structure remains strikingly similar as the luminosity is varied,
changing primarily in spatial extent, because a higher luminosity
allows ionizing radiation to penetrate farther into the cloud. The fact
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Figure 8. Density and velocity profiles for various ionizing photon emission rates. The stellar displacement ζ and the mid-plane cloud density n0 are held
fixed at their fiducial values of 1 and β/4, respectively.

that the density and velocity profiles do not show other significant
variations with luminosity reinforces the conclusion that it is the
density structure of the neutral cloud that sets the spatial variation
in the ionized flow.

The second panel of Fig. 7 shows how the shape of the converged
ionization front changes with the stellar displacement ζ . Here, the
effect is similar to that of increasing N∗. With higher ζ , the ioniz-
ing photons penetrate a larger distance into the cloud, in this case
because they encounter a lower density when the star is displaced
farther from the cloud mid-plane. Note also the flaring at large z,
which increases sharply for higher ζ .

Fig. 9 shows how the density and velocity profiles vary when ζ

is changed. Again, the ionized gas density tracks that of the neutral
cloud. For larger offsets, the flow begins in a less dense portion of
the cloud, and the density of the ionized flow is smaller. Since the
ionizing stellar photons penetrate farther into the cloud when ζ is
larger, the flow begins at more negative values of z. The velocity
profiles shift along the z-axis as ζ is varied, but the acceleration
remains roughly the same.

Attempting to lower ζ below a value of unity, while keeping n0

and N∗ fixed at their fiducial values, results in the same problem as
attempting to increase N∗ on its own. Solutions with lower values
of ζ can be achieved only if n0 is simultaneously increased or N∗
is decreased. Increasing ζ alone also leads to a large amount of
flaring of the ionization front. For ζ = 2, the flaring at the location
of pressure cross-over is such that R/Hb = 5.3. As we shall see in
Section 6.1, this aspect ratio is large compared to observations.

The third panel of Fig. 7 shows how the shape of the ionization
front changes when n0 is varied on its own. In this case, the variation
is more complex. As can be seen from equations (5) and (7), chang-
ing n0 changes not only the overall magnitude of the density profile,
but also the steepness of its falloff. When n0 is increased from β/4
to β/2, the rise in the mid-plane density means that radiation cannot
penetrate as far, and the base of the ionized flow moves closer to the
star. However, as n0 is increased further to 3β/4, the steeper falloff

of the density comes into play, and the distance between the star
and the base of the flow remains nearly constant.

We may effectively factor out the increasing cloud scaleheight if,
instead of increasing n0 on its own, we simultaneously decrease ζ

so that H∗/Hcl remains equal to unity. This result of this exercise is
shown in the bottom panel of Fig. 7. As n0 increases and ζ decreases,
the shape of the flow remains strikingly similar, changing primarily
in spatial extent. In all cases, Hb/Hcl remains close to unity, ranging
from 1.21 when n0 = β/6 to 0.94 when n0 = 3β/4.

Fig. 10 shows how the density and velocity profiles respond to
changes in n0. For a denser neutral cloud, the ionized flow also
begins at a larger density. At the same time, the density of both
the neutral and ionized gas drops more rapidly for a larger n0, and
the z-extent of the flow diminishes. Finally, since the ionized gas
is primarily accelerated via pressure gradients, a steeper decline in
density also corresponds to a more rapid acceleration.

We may again factor out the effect of scaleheight by varying
n0 and ζ simultaneously in the manner described previously. The
resulting density and velocity profiles are shown in Fig. 11. In this
case, the density at the base of the ionized flow again increases with
rising n0, but now in a more systematic manner. In fact, this base
density remains almost exactly equal to 4n0/β, reflecting the fact
that the flows are beginning at pressures very close to the neutral
cloud pressure. This near-pressure equality also accounts for the fact
that the velocities begin near zero in all of these flows. The velocity
profiles are remarkable for the fact that they share an anchor point
near the stellar position at z = 0. Their z-length-scales correlate
tightly with the changing cloud scaleheight.

5.3 Mass, momentum and energy transport

We next consider the total rate at which the neutral cloud adds mass
to the ionized flow. Dimensionally, this rate, from the base to any
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The dynamics of ultracompact H II regions 1345

Figure 9. Density and velocity profiles for various values of the stellar displacement ζ . The photon emission rate N∗ and the mid-plane density n0 are held
fixed at their fiducial values of 1 and β/4, respectively.

Figure 10. Density and velocity profiles for various mid-plane densities of the neutral cloud, n0. The non-dimensional ionizing photon emission rate N∗ and
stellar offset from the mid-plane ζ are held fixed at their fiducial values of 1.

height z, is

Ṁ(z) ≡ 2π

∫ z

−Hb

ρ vinj R

√
1 +

(
dR

dz

)2

dz . (38)

Fig. 12 displays Ṁ(z) in our fiducial model. The cross-sectional
area of the flow starts at zero and monotonically increases with z.
The mass injection rate also climbs from zero, but levels off at the
pressure cross-over point, where no new mass is being added. We
have also plotted the injection speed, vinj(z). This starts out relatively

small, peaks at about half the ionized sound speed at z ≈ −0.5, and
then eventually falls to zero. As the figure also shows, dṀ/dz attains
its maximum close to where vinj peaks.

We stop our calculation at the pressure cross-over location zf,
where neutral material ceases to be drawn into the ionized flow. In
steady state, the rate at which ionized mass crosses zf should equal
the total rate of mass injection up to this point. That is, the mass
outflow rate in ionized gas should be

Ṁout = Ṁ(zf ). (39)
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Figure 11. Density and velocity profiles for various flow models. The mid-plane density n0 and stellar displacement ζ are varied simultaneously so as to keep
the ratio H∗/Hcl = 1.

Figure 12. Non-dimensional mass injection rate and related quantities as functions of z. The mass injection rate Ṁ(z) has been normalized to Ṁ0 =
3.7 × 10−4 M� yr−1 (see equation 43). Its derivative dṀ/dz is normalized to Ṁ0/Z49 = 2 × 10−3 M� yr−1 pc−1. Finally, the injection speed vinj has been
normalized to the ionized sound speed, assumed to be 10 km s−1.

We may also calculate Ṁout using the local dimensional relation

Ṁout = π R2
f ρf uf . (40)

We find that we obtain the same mass outflow rate using these two
methods to within a precision of 0.1 per cent, providing a useful
check on mass conservation.

Dimensionally, the mass outflow rate is

Ṁout = 2π
(mH

2

)
n49 Z2

49 aI If (41)

= a4
cl

GaI
If (42)

= 3.7 × 10−4 M� yr−1 If , (43)
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where the non-dimensional quantity If is

If ≡
∫ zf

0
n vinj R

√
1 +

(
dR

dz

)2

dz . (44)

The dependence of Ṁ on our three parameters N∗, n0 and ζ is
entirely contained within If .

We also define a momentum outflow rate ṗout ≡ Ṁoutuf . This
quantity may be written as

ṗout = 2π
(mH

2

)
n49 Z2

49 aI uf If (45)

=
(

a4
cl

G

) (
uf

aI

)
If (46)

= 2.4 × 1028 dyne

(
uf

aI

)
If . (47)
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1/2Ṁoutu
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Table 1 displays the values of Ṁout, ṗout and Ėout for a variety
of parameter choices. The mass-loss rate is far more sensitive to
changing parameters than is uf, so the trends in momentum and
energy transport can be explained almost entirely by the trends in
Ṁout. Moreover, as equation (40) demonstrates, Ṁout is principally
affected by changes in the cross-sectional area and density at zf.

As before, we first examine the effect of varying the photon
emission rate. With increasing N∗, Rf increases as well, driving up
Ṁout. On the other hand, spreading of the flow results in a slight
decline of the density nf. This latter effect weakens the sensitivity
of Ṁout to N∗. As the dimensional N∗ rises from 1048 to 1049 s−1,
Ṁout scales as N∗0.78.

Similar trends appear when we increase the stellar offset ζ , leav-
ing other parameters fixed (see the second level of Table 1). With

Table 1. Mass, momentum and energy transport rates.

N∗ ζ n0 Ṁout ṗout Ėout

(M� yr−1) (dyne) (erg s−1)

0.1 1.0 β/4 6.2 × 10−5 5.3 × 1027 3.6 × 1033

0.3 1.0 β/4 1.6 × 10−4 1.6 × 1028 1.3 × 1034

1.0 1.0 β/4 3.7 × 10−4 3.9 × 1028 3.2 × 1034

1.0 1.5 β/4 6.0 × 10−4 6.8 × 1028 6.0 × 1034

1.0 2.0 β/4 8.5 × 10−4 9.9 × 1028 9.2 × 1034

1.0 1.0 β/2 2.4 × 10−4 2.7 × 1028 2.3 × 1034

1.0 1.0 3β/4 4.7 × 10−4 5.6 × 1028 5.2 × 1034

1.0 1.0 β 5.3 × 10−4 6.5 × 1028 6.3 × 1034

1.0
√

3/2 β/6 4.3 × 10−4 4.4 × 1028 3.6 × 1034

1.0
√

1/2 β/2 2.9 × 10−4 3.0 × 1028 2.5 × 1034

1.0
√

1/3 3β/4 2.5 × 10−4 2.6 × 1028 2.2 × 1034

larger ζ , the ionization flow flares out. At the same time, the flow
begins in a less dense portion of the cloud, so that nf falls. Never-
theless, the net effect is for Ṁout to increase. In the range 1 < ζ < 2,
we find that Ṁout scales as ζ 1.2.

Increasing n0 on its own leads to complicated behaviour similar
to that we encountered previously. As n0 rises from β/4 to β/2,
Ṁout first falls because the ionization front shrinks in size (see the
third panel of Fig. 7). However, as n0 further increases from β/2 to
β, the cloud scaleheight continues to shrink. The rapidly declining
cloud density at any fixed z causes the ionized outflow to broaden,
and Ṁout rises.

Finally, we may vary n0 and ζ simultaneously, so as to keep
H∗/Hcloud = 1. The fourth panel of Fig. 7 shows that the ioniza-
tion front retains its shape but shrinks in scale. As Fig. 11 shows,
increasing n0 under these circumstances raises the ionized density
at any z. Consequently, the stellar radiation cannot penetrate as far.
In particular, Rf becomes smaller at the pressure cross-over point.
Table 1 verifies that this shrinking of the cross-sectional area causes
Ṁout to decline. Quantitatively, we find Ṁout ∝ n−0.37

0 .
The fact that the mass outflow rate generally decreases with

increasing cloud density is significant, and calls for a more basic
physical explanation. The lateral size R of the outflow is about
that of a pressure-bounded H II region. From equation (21), we
have R ∝ n

−2/3
I , where nI is a representative ionized density in the

flow. From equation (40), the mass-loss rate Ṁout is proportional
to R2 nI. Together these two relations imply Ṁout ∝ n

−1/3
I . Finally,

if nI is proportional to the peak neutral density n0, as follows from
the condition of pressure equilibrium, then we have Ṁout ∝ n

−1/3
0 ,

which is close to our numerical result.
This argument also helps to explain why the mass-loss rates that

we obtain are smaller than those of past champagne-flow calcu-
lations. For example, Bodenheimer et al. (1979) found that, for a
star with N∗ = 7.6 × 1048 s−1 embedded in a slab-like molecular
cloud of uniform number density 103 cm−3, the mass-loss rate is
2 × 10−3 M� yr−1. For the much denser molecular cloud in our
fiducial model, extrapolation of the Bodenheimer et al. (1979) rate
using Ṁout ∝ n

−1/3
0 yields Ṁout = 4 × 10−4 M� yr−1, quite close

to our calculated result. It should be kept in mind that this compari-
son is only meant as a consistency check, given the many differences
in detail of the two calculations.

We may combine our scaling results for the mass outflow rate in
order to show explicitly its dependence on N∗ and n0. We have

Ṁout = 3.5 × 10−4 M� yr−1

( N∗
1049 s−1

)0.78 ( n0

105 cm−3

)−0.37
,

(51)

More precisely, the two power-law indices are 0.775 ± 0.05
and −0.369 ± 0.004, where we have included the standard errors
from our linear least-squares fit. In writing equation (51), we have
implicitly assumed that the stellar displacement H∗ varies with n0 so
that the former equals one cloud scaleheight. We also caution that
all these numerical results are based on a slab model for the parent
cloud. Bearing these caveats in mind, equation (51) may prove
useful for future modelling of massive star formation regions.

The ionized wind in an UCHII region represents a large increase
in mass-loss over what the driving star would achieve on its own.
A bare, main-sequence O7.5 star with N∗ = 1 × 1049 s−1 radia-
tively accelerates its own atmosphere to create a wind with 10−7–
10−6 M� yr−1 (Mokiem et al. 2007; Puls, Vink & Najarro 2008),
two to three orders of magnitude below our fiducial value. How-
ever, one cannot completely ignore the dynamical effect of the
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1348 N. Roth, S. W. Stahler and E. Keto

stellar wind in an UCHII region, as we will discuss shortly. Even
younger stars of the same luminosity drive bipolar outflows that have
far greater mass-loss rates than we compute, typically 10−3–10−2

M� yr−1 (Churchwell 2002). While the exact mechanism behind
these molecular outflows is uncertain, they might result from the en-
trainment of cloud gas by massive jets emanating from an accreting
protostar (Beuther & Shepherd 2005).

Over the inferred UCHII lifetime of 105 yr, a star driving an
outflow at the rate of 4 × 10−4 M� yr−1 disperses 40 M� of cloud
mass. This figure is tiny compared with 104 M�, the typical mass
of a high-density clump within an infrared dark cloud (Hofner et al.
2000; Hoare et al. 2007). Thus, the UCHII region, which arises in
the densest part of the cloud structure, represents an early stage
in its clearing. Presumably, a compact H II region, of typical size
0.1–0.3 pc, appears as the star begins to clear less dense material.
We expect the outflow region to broaden and the mass-loss rate to
increase during this longer epoch.

Our O7.5 star drives a wind with an associated momentum output
of about L∗/c = 3.0 × 1028 dyne (Vacca et al. 1996). This figure is
remarkably close to the ṗout of 4 × 1028 dyne in our fiducial model.
The numerical agreement is fortuitous, since the ionized outflow
represents material drawn in from the external environment and ac-
celerated by thermal pressure. The correspondence between these
two rates reflects the numerical coincidence that a4

cl/G ∼ L∗/c for
an embedded O star. In any event, a more complete treatment of
the flow in an UCHII region would also account for the additional
forcing from the stellar wind (see, e.g., Arthur & Hoare 2006 for a
simulation that includes this effect). Note finally that the ionizing
photons themselves impart momentum to the flow. The resulting
force is frad, which we introduced in Section 2.4, and whose quan-
titative effect we discuss below.

The kinetic energy transport rate for our fiducial model is only
4 × 10−5 times L∗, the bolometric luminosity of the star. Given that
the flow is transonic, the thermal energy carried in the outflow is of
comparable magnitude. The vast bulk of the stellar energy is lost
to radiation that escapes from the H II region during recombination,
through line emission from ionized metals, and continuum, free–

free emission (Osterbrock 1989). For a time span of 105 yr, the
total energy ejected in our fiducial model is a few times 1047 erg,
a figure comparable to the turbulent kinetic energy in a molecular
clump of mass 104 M� and internal velocity dispersion of 2 km s−1.
This match broadly supports the contention of Matzner (2002) that
H II regions provide the ultimate energy source of turbulence in
molecular clouds large enough to spawn massive stars.

5.4 Role of radiation pressure

One of the novel features in this analysis of UCHII regions is
our inclusion of the momentum deposition by ionizing photons.
We derived frad, the radiative force per mass, in Section 2.4 (see
equation 8), and expressed it non-dimensionally in equation (29).
How significant is this term in the overall flow dynamics?

To assess the role of frad, we recalculated our fiducial model after
artificially removing the force from the equations of motion, (31)
and (32). Fig. 13 shows the result of this exercise. The dashed
curve in the top panel is the altered density profile, n(z), while the
analogous curve in the bottom panel is the altered velocity, u(z).

Near the base, the stellar flux is directed oppositely to the ion-
ized gas velocity. Thus, the radiation force decelerates the flow in
this region. The bottom panel of the figure shows how the starting
velocities are lower when radiation pressure is included. As a result
of this force, gas piles up near the base, and therefore develops a
larger thermal pressure gradient. The enhanced gradient drives the
flow outwards in spite of the retarding stellar photons. The density
pileup is evident in the solid curve within the top panel of Fig. 13.

The effect of radiation pressure diminishes at higher values of z.
Recall that frad is proportional to the flow density n. Gas of higher
density has a greater volumetric recombination rate, and thus ab-
sorbs more ionizing photons per time to maintain ionization balance.
Since the density falls with distance z, so does the magnitude of the
force.

A second contributing factor is the changing direction of pho-
tons emanating from the star. Near the base, the incoming flux is
nearly all in the negative z-direction, so that 〈cos θ〉 is close to −1.

Figure 13. Density and velocity profiles both for the fiducial model (solid curves) and with radiation pressure omitted (dashed curves).
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The dynamics of ultracompact H II regions 1349

This geometric term vanishes at the level of the star (z = 0), and then
climbs back up towards +1. However, the rapidly falling density
overwhelms the latter effect, and the magnitude of the force still
declines (see the dotted curve in Fig. 6).

Finally, the radiation force does not significantly alter the shape
of the ionization front. In our fiducial model, the base of the flow
is farther from the star when frad is omitted. However, the fractional
change in this distance from the case with the force included is only
0.05.

5.5 Bipolar outflows

The outflow topology sketched in Fig. 1 does not exist for arbitrary
values of our parameters. If the star is situated too close to the
densest portion of the cloud, or if the ionizing luminosity is too
weak, then a transonic flow, steadily drawing in neutral material,
cannot develop. At a sufficiently low luminosity or high neutral
density, the H II region first undergoes pressure-driven expansion,
but then remains trapped, i.e. density bounded, on all sides.

Alternatively, with a much higher luminosity and/or lower cloud
density, an outflow may erupt on both sides of our model planar slab.
Such a bipolar morphology is harder to achieve, in part because of
the values of cloud density and stellar luminosity required, and in
part because real clouds do not have a slab geometry, i.e. they are
not infinite in lateral extent. Increasing the stellar luminosity in an
originally monopolar flow usually just widens the ionization front,
without creating another outflow lobe. It is therefore not surprising
that out of the hundreds of UCHII regions that have been identified,
only a handful have a bipolar morphology (Garay & Lizano 1999;
Churchwell 2002).

Given their relative scarcity, we forgo a parameter study of this
type of UCHII region, and focus instead on the simplest example.
Here, we place the star exactly at the cloud mid-plane, ζ = 0. We
set the cloud mid-plane density to n0 = β/4, as in our fiducial,
monopolar model. However, we find that N∗ = 1 does not lead to
a bipolar flow. To be safe, we have raised N∗ to 3.

In order to generate this solution, we began with the fact that
u(0) = 0, as demanded by symmetry. We guessed n(0), the flow
density at the mid-plane, and then used these two starting values as
the initial conditions for integrating the coupled first-order equations
(31) and (32). As before, we use equation (33) to obtain the injection
velocity. Since R does not vanish at the base, the right-hand sides
of (31) and (32) are well behaved at the start, and the integration
is relatively straightforward. Using the method of shooting and
splitting, we refine our guess for the starting ionized density until
we approach the sonic point. We jump over this point in just the
manner described in Section 4.3.

Fig. 14 shows the symmetric ionization front for this model. The
two sets of horizontal lines show the location of the sonic tran-
sitions and the pressure cross-over points, respectively. We notice
immediately how close these points are to one another (compare
Fig. 4). This same feature is apparent in Fig. 15, which displays the
density and velocity profiles. The velocity, which is an odd function
of the height z, reaches unity just before the curve ends at the pres-
sure cross-over. The ionized density n(z) is symmetric about z = 0
and has a shape similar to that of the neutral cloud, peaking at the
mid-plane.

In this outflow, neutral gas with a pressure exceeding that of
the ionized gas is drawn in laterally through the ionization front.
The ionized gas flows away in a symmetric manner from its re-
gion of maximal density at the mid-plane. Radiation pressure never
acts to decelerate the flow, as in the monopolar case. Rather, it

Figure 14. The ionization front for a symmetric, bipolar transonic outflow.
Here N49 = 3, n0 = β/4 and ζ = 0. The two horizontal dashed lines closer
to the star mark the sonic transitions, while the outer pair indicates the
pressure cross-over.

Figure 15. Density and velocity profiles for the bipolar outflow shown in
Fig. 14.

contributes to the acceleration, consequently reducing the ionized
density gradient. Nevertheless, the thermal pressure gradient re-
mains the strongest driving force.

As mentioned previously, attempts to lower N∗ closer to 1 re-
sulted in failure to obtain a transonic solution. Specifically, the
pressure cross-over point was reached before the sonic transition.
We found this result for any guess of the starting ionized density
below 4n0/β, i.e. for ionized pressures at the mid-plane less than
the corresponding cloud pressure. Our inability to find transonic
solutions in this regime suggests that the true steady-state solution
is not an outflow, but a trapped H II region in which the interior and
cloud pressures match.

5.6 Pseudo-cylindrical cloud

Up to this point, we have taken our molecular cloud to be a planar
slab, a geometry that is convenient mathematically, but not truly
representative of the clouds found in nature. There exist no detailed
studies of infrared dark cloud morphologies. In the realm of low-
mass star formation, recent observations of Gould Belt clouds reveal
that a tangled network of filaments creates the dense cores that in
turn collapse to form stars (André et al. 2010). Thus, a more realistic
model for our background cloud might be a cylinder in force balance
between self-gravity and turbulent pressure. If the interior velocity
dispersion is again spatially uniform, as we have assumed, then the
density falls with a power law with distance from the central axis, as
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1350 N. Roth, S. W. Stahler and E. Keto

Figure 16. Cloud density profiles for a slab and pseudo-cylindrical model
of equal column density.

opposed to the much steeper, exponential falloff we have employed
until now.

Our model is flexible enough that we can explore various func-
tional forms for the cloud density profile. However, our cloud is
still a one-dimensional slab, so that the density ρ is a function of z,
the distance from the mid-plane. We construct a pseudo-cylindrical
cloud, which has the density profile of a self-gravitating, isothermal
cylinder (Ostriker 1964), but with the cylindrical radius R replaced
by z. In this model, the dimensional number density and gravita-
tional potential are

ncl = n0

[
1 + 1

4

(
z + H∗

Hcl

)2
]−2

, (52)

�cl = −2 a2
cl ln

[
1 + 1

4

(
z + H∗

Hcl

)2
]

. (53)

Here, H∗ is again the distance between the star and the cloud mid-
plane, and Hcl is the scaleheight in equation (7).4

Choosing N∗ = 1 and ζ = 1, we could not achieve a transonic
flow, if we also used the fiducial n0 = β/4. In retrospect, this result
could have been anticipated, since the pseudo-cylindrical model has
a smaller column density, as measured from the mid-plane, than the
slab model with the same n0. We therefore utilized n0 = β/2 in the
pseudo-cylindrical case, for which we could indeed find a transonic
solution. For comparison, we ran a slab model with n0 = πβ/2,
which has the same column density as the pseudo-cylinder. The
two density profiles, both non-dimensional, are displayed together
in Fig. 16.

Fig. 17 compares the ionization front shapes for the two cloud
models. Because of its relatively high n0-value, the ionization front
in this slab model is more flared than in the fiducial one (recall
Fig. 7). The degree of flaring in the pseudo-cylindrical case is much
less, a consequence of the gentler falloff in the cloud density profile.

Finally, Fig. 18 compares the density and velocity profiles within
the flows themselves. The flow density within the pseudo-cylinder
starts out lower and falls off more slowly. Since the thermal pressure

4 Our choice of formula for Hcl is a factor of
√

2 larger than that used in
Ostriker (1964).

Figure 17. Ionization fronts for the slab and pseudo-cylindrical cloud mod-
els shown in Fig. 16. The horizontal dashed line corresponds to the cloud
mid-plane for both models.

gradient is reduced, so is the acceleration of the ionized gas. As
seen in the lower panel of the figure, the velocity begins at a more
subsonic value and thereafter climbs less steeply.

6 C O M PA R I S O N TO O B S E RVAT I O N S

6.1 Emission measure maps

One way to compare our model with observations is to generate
synthetic contour maps of the radio continuum emission measure.
The latter is the integral of n2 with respect to distance along each
line of sight that penetrates the outflow. The resulting maps may
also be compared to those generated by other theoretical models,
such as the ones of Redman et al. (1998; fig. 3) and Arthur & Hoare
(2006; fig. 7),

Fig. 19 displays a series of emission measure maps at different
viewing angles, all using our fiducial model. Here, the inclination
angle θ is that between the flow’s central (z-)axis and the line
of sight. The star, as always, lies at the origin, and the spatial
coordinates are non-dimensional.

For a flow oriented in the plane of the sky (θ = π/2), the bright-
est emission occurs near the base of the flow, where the ionized gas
is relatively dense. The precise location of the peak emission point
depends on two competing factors. The width of the ionized flow
monotonically increases with z, while the n2 decreases. In prac-
tice, the peak emission is located about midway between the flow
base and the star. The latter two points are separated by a physical
distance of about Z49/2 (recall equation 23).

The peak emission measure for our fiducial model is
4.7 × 107 cm−6 pc. When N∗ is lowered by a factor of 10, as
in Table 1, the peak emission measure drops to 1.6 × 107 cm−6 pc.
Suppose, on the other hand, we fix N∗ at its fiducial value while in-
creasing n0 and concurrently decreasing ζ in the manner described
below equation (51). Then, we find that the peak emission measure
reaches 1.9 × 108 cm−6 pc for an n0 of 3β/4 = 18.75. Of the 15
cometaries in Wood & Churchwell (1989) with estimated peak emis-
sion measures, the figure varies from 2 × 107 to 3 × 109 cm−6 pc.
Of the 12 cometaries in Kurtz et al. (1994) with estimated peak emis-
sion measures, they vary from 1 × 106 to 6 × 108 cm−6 pc. Thus,
our model, including reasonable parameter variations, yields peak
emission measures that fall within the middle range of observed
values.

As the z-axis tips towards the line of sight, the emission becomes
fainter. The reason is that the total emission measure along any line
of sight is increasingly weighted by more rarefied gas at higher
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Figure 18. Density and velocity profiles for the slab and pseudo-cylindrical cloud models shown in Fig. 16.

Figure 19. Emission measure contours for our fiducial UCHII model
viewed at various angles θ with respect to the flow’s central z-axis. The
peak emission measure is 4.7 × 107 cm−6 pc, and the contours in the top
panel represent 0.95, 0.85, . . . ,0.15 times that value. A grey-scale has been
applied consistently to all the maps to indicate which emission measures
correspond to the plotted contours.

values of z. Thus, as seen in Fig. 19, the contours representing
higher values of the emission measure successively disappear as θ

decreases.
For θ close to zero, the shape of the remaining contours is nearly

spherical. However, our synthetic maps fail to reproduce the shell or
core-halo morphologies identified by Wood & Churchwell (1989).
The latter have pronounced limb brightening. As previously noted
by Zhu et al. (2005), champagne-flow models have difficulty ex-
plaining this feature.

Returning to generic cometary regions, our model fits their
morphology quite well. Fig. 20 compares our fiducial flow (with
θ = π/2) to an emission map taken from the survey of Wood &
Churchwell (1989). This specific UCHII region has an estimated
distance of 16.1 kpc. Accordingly, our synthetic map is displayed
in angular coordinates. We could, in principle, make more precise
fits to both this region and many others, by tuning our three free
parameters and the viewing angle. Here, we do not attempt such a
detailed, comprehensive matching.

6.2 Velocity structure

As explained at the outset of Section 2.3, we calculate a laterally
averaged ionized gas velocity at each z-location within our model
H II region. For this reason, we cannot attempt to match detailed
observations of UCHII velocities along particular lines of sight.
Nevertheless, we do reproduce several broad characteristics of some
UCHII regions. Our model yields a transonic flow that proceeds
along the cometary axis, with steep acceleration from head to tail. A
similar pattern is seen in the objects observed by Garay et al. (1994).
For our fiducial cometary UCHII region, the velocity gradient we
compute is 8 km s−1 pc−1, about a factor of 2 lower than the gradient
measured in G32.80 ± 0.19. However, as is evident in our Fig. 11,
raising the cloud density and decreasing the displacement of the star
from the mid-plane can give a velocity gradient substantially larger
than our fiducial one.
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Figure 20. Contours of radio continuum emission. The left-hand panel uses our fiducial theoretical model, with inclination angle θ = π/2 and contours
as described in the caption of Fig. 19. The right-hand panel is an image of G12.21−0.10 from the survey by Wood & Churchwell (1989), reproduced by
the permission of the AAS. The peak emission measure in our model is 4.7 × 107 pc cm−6, while the inferred peak emission measure for G12.21−0.10 is
5.2 × 107 pc cm−6. The reader should refer to Wood & Churchwell (1989) for the flux levels corresponding to each contour.

For the bipolar case, we find steady acceleration in both directions
along the central axis. Garay & Lizano (1999) observed this feature
in several bipolar compact H II regions. The velocity gradient we
compute for our fiducial bipolar model is 50 km s−1 pc−1, about
one-third the gradient measured in the compact bipolar H II region
K3-50A (Depree et al. 1994).

Like all champagne-flow models, ours predicts that the ionized
and molecular gas should be closest in velocity near the head of
the cometary region, and that the two velocities should grow farther
apart down the tail of the ionized region. This is not the case for
G13.87 ± 0.28, for which the ionized velocity closely approaches
the molecular cloud velocity in the tail, a characteristic of bowshock
models (Garay et al. 1994). However, in G32.80 + 0.19, the central
line emission of the ionized gas in the tail shows accelerates to a
speed at least 6 km s−1 greater than that of the molecular cloud
(Garay et al. 1994). This systematic increase is more consistent
with a champagne flow.

For completeness, we note that there exist a number of cometary
UCHII regions for which neither a champagne flow nor bowshock
accurately accounts for the detailed velocity structure. One well-
studied example is G29.96−02 (Martı́n-Hernández et al. 2003). Ob-
jects such as these have motivated numerical simulations in which
a champagne flow is combined with a stellar wind and motion of
the star itself through a molecular cloud (Arthur & Hoare 2006).

In summary, a pure champagne-flow model such as ours is in-
adequate to explain all the observed features of cometary UCHII
regions. We are encouraged, however, that the main characteristics
are well reproduced. In addition, the simplicity of our quasi-one-
dimensional model in comparison with multidimensional numerical
simulations, allows a much broader exploration of parameter space
that will aid in a general understanding of the phenomenon.

7 SU M M A RY A N D D I S C U S S I O N

We have explored a quasi-one-dimensional, steady-state wind
model for UCHII regions. This picture offers a natural explana-
tion for the cometary morphology that is frequently observed. We
are also able to match, at least broadly, such basic observational
quantities as the diameter of the region, its peak emission measure,
and the ionized gas velocity. Additionally, we have employed the
model to see how the density and velocity structure of the region

respond to changes in the stellar luminosity, molecular cloud den-
sity and displacement of the exciting star from the peak molecular
density. Checking these trends against observations is a task for the
future.

In our view, the very young, massive star creating the ionization
is still buried deep within a large molecular cloud. Ionizing photons
from the star steadily erode the cloud, expelling gas at a rate of
the order of 10−4 M� yr−1. Consequently, over the inferred UCHII
lifetimes of order 105 yr, the star drives out only a relatively small
amount of cloud gas, representing the dense clump in which it was
born. As time goes on, we expect the flow to grow in size, with the
mass expulsion rate concurrently rising.

The ionized gas just inside the ionization front is underpressured
with respect to the surrounding neutral material. Indeed, it is just this
pressure difference that draws in more neutral material and sustains
the wind. Roshi et al. (2005) observe just such a difference in the
UCHII region G35.20−1.74. In our model, this pressure difference
is not due to the generation of a shock by the expanding H II region
as in the classical model for D-type fronts (Spitzer 1978, chapter
12). Such a shock probably did form earlier in the evolution of
the UCHII region, but has died away by the time a steady flow is
established.

Our semi-analytic model necessarily entails simplifying assump-
tions. One is our neglect of the stellar wind, which could partially
excavate the ionized region. In over half the objects studied in Zhu
et al. (2008), the ionized gas appears to be skirting around a central
cavity, possibly indicating the influence of the wind. Note also that
a wind would produce an additional shock near the front, elevating
the pressure difference.

We have also assumed a steady-state flow in which we neglect
the relatively slow advance of the ionization front into the molec-
ular cloud. Recall that equation (16) gives v′

cl, the incoming ve-
locity of cloud gas in the frame of the ionization front. Using a
typical injection speed of v′

inj = (1/2) aI, along with n = n49 and
ncl = (β/4)n49, we find that v′

inj = aI/2β = 0.2 km s−1, which
is indeed small compared to the effective cloud sound speed of
2 km s−1. However, over the 105 yr lifetime of the UCHII region,
the front advances by 0.02 pc, an appreciable fraction of the region’s
diameter. A more complete calculation would account for the mo-
tion of this front, through retention of the flux leakage term in
equation (2).
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In the future, both our type of semi-analytic model and multidi-
mensional numerical simulations can play valuable roles. Extending
the present calculation, one could follow the spread of ionization to
see how the H II region grows and disperses the bulk of the molecular
cloud. Simulations can eventually provide a more realistic picture
of the parent cloud. In particular, we see a need to explore the role
of turbulence, which we have treated simplistically as providing an
enhanced, isotropic pressure. As Arthur et al. (2011) have shown,
the advance of an H II region into a turbulent cloud is quite different
from the classical account. Within our model, the wind itself may
not be a laminar flow, as we have assumed. Inclusion of these ef-
fects may be necessary to explain the more extreme members of the
irregular UCHII class identified by Wood & Churchwell (1989).
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APPENDI X A : R ELATI ON BETWEEN ε A N D N ∗

Consider a massive star of bolometric luminosity L∗, radius R∗ and
temperature T∗. Assuming the star emits like a blackbody, the mean
energy of its ionizing photons is

ε =
∫ ∞

νcrit
Bν dν∫ ∞

νcrit
Bν/(hν) dν

= k T∗

∫ ∞
xcrit

x3/(ex − 1) dx∫ ∞
xcrit

x2/(ex − 1) dx
, (A1)

where x ≡ hν/(kT∗). Here, νcrit denotes the Lyman continuum fre-
quency, and xcrit ≡ hνcrit/(kT∗). We also may write

N∗ = 4π2R2
∗

∫ ∞

νcrit

Bν

hν
dν , (A2)
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Figure A1. The ionizing photon emission rate from an O star as a function
of its effective temperature. Shown are discrete values from Vacca et al.
(1996) along with our approximate analytic result (solid curve).

and so

N∗ ∝ R2
∗ T 3

∗

∫ ∞

xcrit

x2

ex − 1
dx . (A3)

We next use the standard scaling relations R∗ ∝ M0.75
∗ , L∗ ∝ M3.5

∗
for massive main-sequence stars (e.g. Hansen, Kawaler & Trimble
2004) as well as the blackbody relation, L∗ ∝ R2

∗ T 4
∗ . We find

N∗
N49

=
(

T∗
3.97 × 104 K

)6 ∫ ∞

xcrit

x2

ex − 1
dx . (A4)

Here, we have implicitly assumed that the bulk of the star’s lumi-
nosity is in ionizing photons. We have used results of Vacca et al.
(1996) to set the proportionality constant in the last relation. For
any T∗, equation (A4) then gives us N∗, while equation (A1) gives
ε. We thus obtain the functional dependence of ε on N∗. Finally,
equation (30) in the text gives γ as a function of Ñ∗, as plotted in
Fig. 3.

As a check on the accuracy of our prescription, Fig. A1 shows
N∗ as a function of T∗, both from our analysis and from the more
detailed calculations of Vacca et al. (1996). Our approximation is
most accurate at the highest luminosities, but tends to overestimate
the ionizing photon emission rate for the lowest luminosities we
consider.

A P P E N D I X B : B O U N DA RY C O N D I T I O N S
AT BA SE O F FLOW

We expand the derivative on the left-hand side of equation (12), and
factor out dR/dz from the radical. We thus find

2 R
dR

dz
n u + R2 dn

dz
u + R2 n

du

dz
= 2 R

dR

dz

√
1 +

(
dz

dR

)2

n vinj.

(B1)

At the base, both R and dz/dR tend to zero. Thus, the second and
third terms on the left-hand side of equation (B1) vanish, as does
the square root on the right-hand side. We therefore have

u = vinj , (B2)

exactly at the base. Recall that vinj is a function of n. We choose n
at the base such that we obtain a transonic solution via the method
of shooting and splitting.

We also need to know the values of dn/dz and du/dz at the base.
We begin by rewriting the decoupled, non-dimensional equations
of motion as

(1 − u2)
du

dz
− u

d�cl

dz
+ ufrad

= 2
√

1 + (dz/dR)2(1 + u2)vinj − 2(1 + v2
inj)u

R dz/dR
(B3)

(1 − u2)
dn

dz
+ n

d�cl

dz
− nfrad

= 2(u2 + v2
inj)n − 4n

√
1 + (dz/dR)2u vinj

R dz/dR
, (B4)

where frad is given by equation (8). In the limits R → 0 and
dz/dR → 0, the right-hand sides of both equations can be eval-
uated using L’Hôpital’s rule. In order to compute quantities such
as d2z/dR2, we use the fact that, to lowest order in R, the cavity
wall is parabolic, i.e. z ≈ A R2 − Hb where A is a constant. At
each timestep, we perform a numerical fit to determine A. The final
results for the derivatives at the base are

dn

dz
=

[
1

1 − u2

] [
−n

d�cl

dz
+ n frad − 4 A n u2

]
(B5)

and

du

dz
=

[
1

1 − u2

] [
1

2
u

d�cl

dz
− 1

2
u frad + Au(1 + u2)

+ 1

2

dvinj

dz
(1 − u2)

]
. (B6)

We obtain the term dvinj/dz in equation (B6) by differentiating
equation (33):

dvinj

dz
= 2(β n2 − 8 n ncl + 16n2

cl)(n dncl/dz − ncl dn/dz)

β n2(n − 4ncl)2vinj
. (B7)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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