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Star clusters under stress: why small systems cannot dynamically relax
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ABSTRACT
Utilizing a series of N-body simulations, we argue that gravitationally bound stellar clusters of
modest population evolve very differently from the picture presented by classical dynamical
relaxation theory. The system’s most massive stars rapidly sink towards the centre and form
binary systems. These binaries efficiently heat the cluster, reversing any incipient core con-
traction and driving a subsequent phase of global expansion. Most previous theoretical studies
demonstrating deep and persistent dynamical relaxation have either conflated the process with
mass segregation, ignored three-body interactions, or else adopted the artificial assumption
that all cluster members are single stars of identical mass. In such a uniform-mass cluster,
binary formation is greatly delayed, as we confirm here both numerically and analytically.
The relative duration of core contraction and global expansion is effected by stellar evolution,
which causes the most massive stars to die out before they form binaries. In clusters of higher
N, the epoch of dynamical relaxation lasts for progressively longer periods. By extrapolating
our results to much larger populations, we can understand, at least qualitatively, why some
globular clusters reach the point of true core collapse.

Key words: binaries: general – stars: kinematics and dynamics – stars: luminosity function,
mass function – open clusters and associations: general.

1 IN T RO D U C T I O N

The dynamical evolution of gravitationally bound stellar clusters
has been extensively studied for decades, and the basic theory is
thought to be secure. Populous systems evolve, over many crossing
times, through the processes known collectively as dynamical re-
laxation (Binney & Tremaine 2008, chapter 7). The inner core of the
cluster contracts, effectively transferring energy to the outer halo,
which expands as a result. Concurrently, stars of relatively high
mass sink towards the cluster centre. Theory predicts further that
the interior contraction leads eventually to core collapse, a catas-
trophic rise in central density (Lynden-Bell & Wood 1968). As first
suggested by Hills (1975), the runaway is halted when hard binaries
form near the centre and release energy through three-body encoun-
ters. Observations of globular clusters, which can be significantly
older than their relaxation times, have confirmed these expectations
beautifully. The surface brightness profiles of Milky Way globu-
lar clusters indicate that some 20 per cent harbour collapsed cores
(Djorgovski & King 1986; Chernoff & Djorgovski 1989; Trager,
King & Djorgovski 1993). Near the centres of many systems are
X-ray binaries and blue stragglers (Bailyn 1995), both created at
high stellar density, perhaps during the collapse phase.

Globular clusters have impressive populations (N ∼ 105–106),
but are relatively rare and distant groups. Open clusters are sparser
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(N ∼ 102–103), but much more common and closer at hand, with
over a 1000 catalogued (Dias et al. 2002); the sample is thought
to be complete out to 2 kpc (Brown 2001). Ironically, their evolu-
tionary status is much less clear. Half of open clusters disintegrate
within 2 × 108 yr after birth (Wielen 1974), a span corresponding
to at most a few initial relaxation times. Not surprisingly, there
is little observational signature that relaxation has occurred, aside
possibly from mass segregation, first found by van den Bergh &
Sher (1960). A small fraction of open clusters, located at the out-
skirts of the Galaxy, have survived for over 1 Gyr (Friel 1995).
Even these ancient systems show no sign of core collapse. A pro-
totypical example, M67, has a smooth surface density profile that,
unlike post-collapse systems, is well fitted by a King model (Bica
& Bonatto 2005); the system appears to be in the last stages of tidal
disruption (Davenport & Sandquist 2010).

Hurley et al. (2005) performed N-body simulations to follow
the evolution of M67 from infancy to its inferred age of 4 Gyr.
Their preferred model began with 12 000 single stars and an equal
number of binaries; only about 10 per cent of these stars survived
to the end. Even over the protracted time of the simulation, the
cluster never exhibited classical dynamical relaxation. Instead, the
central mass density rose slightly and then declined. Hurley et al.
(2005) attributed this behaviour to the binary-rich initial population.
Hard binaries undergo superelastic encounters with other stars and
effectively heat the cluster (Heggie 1975), counteracting the out-
ward energy transfer driving dynamical relaxation. Indeed, it has
long been appreciated that the presence of even a few binaries can
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radically alter the evolution of the sparsest groups (Terlevich 1987).
These findings prompt us to ask a more general question: under what
conditions does binary heating prevent significant core collapse?

In this paper, we begin to address this larger issue, utilizing our
own suite of N-body simulations. The basic answer to our question
is that the presence of massive stars is essential. These massive stars
couple with others to form pairs that, through three-body interac-
tions, frustrate core contraction relatively early, so that there is little
or no rise of the central density. The system thereafter undergoes
global expansion. Here, the stellar density falls everywhere.

However, there a mitigating factor in this scenario – stellar evo-
lution. In more populous clusters with longer relaxation times, the
most massive stars die out. Binary heating is tamed and does not
effectively oppose core contraction until later in the cluster’s evolu-
tion. As a result, this contraction proceeds to yield a higher density
contrast. Such is the case in the globular clusters that have under-
gone true core collapse.

We elucidate these processes in a step-by-step fashion, begin-
ning with very simple, highly idealized systems and progressively
adding more realistic features. In Section 2 below, we introduce an
energy analysis that quantitatively distinguishes classical dynam-
ical relaxation from global expansion. We apply this analysis to
both single-mass systems and those with a more realistic stellar
mass distribution; only in the latter does binary heating come into
play. Section 3 describes in more detail the discontinuous manner
in which binary heating actually operates, while Section 4 shows
how stellar evolution lessens the effect. Finally, in Section 5, we
discuss the implications of our results for both open clusters, which
we have simulated more or less accurately, and globular clusters,
which we cannot model directly.

2 C LUSTER ENERGETICS

2.1 Prelude: single-mass models

We have run a suite of N-body simulations, all employing the
publicly available code STARLAB (Portegies-Zwart et al. 2001,
appendix B). Significantly for our purposes, the code uses no soft-
ening in the gravitational potential, so that the formation and dy-
namical interactions of binaries are followed accurately. As we did
not have access to any special-purpose hardware, our simulations
were limited by time constraints to N � 104.

Let us first adopt the simplified, and assuredly unrealistic, as-
sumption that all stars have identical mass. Many of the classic
theoretical papers in stellar dynamics, as well as textbook accounts,
have utilized such single-mass models. We assume the cluster starts
out in virial equilibrium, with a mass density profile corresponding
to an n = 3 polytrope. We recently found that this particular con-
figuration best describes the very early state of the Pleiades, just
after gas removal (Converse & Stahler 2010, hereafter Paper I). We
stress, however, that the precise initial state is of little consequence;
the system loses memory of this state well within one relaxation
time, as in the case of the Pleiades.

In this and our other simulations, we model only isolated systems,
with no tidal gravitational field either from the Galaxy or from pass-
ing molecular clouds. More complete models should include such
an external field, which eventually destroys all clusters. However,
the presence of the field does not qualitatively alter our main con-
clusions regarding cluster evolution up to the point of dissolution.

Fig. 1 shows the evolution of Lagrangian mass shells in a cluster
with the representative population of N = 4096. Here we display
the temporal change of the shell radii, expressed as fractions of the

Figure 1. Temporal evolution of the radii of Lagrangian mass shells, for
a single-mass cluster model (N = 4096). Each curve is labelled by the
corresponding mass fraction of the cluster. The radii are normalized to the
initial virial value, rv, and the time to the initial relaxation time, trelax.

cluster’s initial virial radius, rv. Each shell has the indicated value
of Mr/M0, where Mr is the interior mass and M0 the initial mass
of the whole cluster. The time itself is normalized to the initial
relaxation time trelax, for which we utilize equation (1.37) in Binney
& Tremaine (2008):

trelax ≡ N

8 ln �
tcross, (1)

where ln � = ln(0.4 N). Following standard practice (e.g. Portegies-
Zwart et al. 1998, section 2.4), the crossing time tcross is given by

tcross ≡
(

8r3
v

GM0

)1/2

. (2)

We need not choose values for rv or tcross as long as we compare
only non-dimensional versions of all the relevant quantities (Heggie
& Mathieu 1986).

As we see in the figure, interior shells contract, while those closer
to the cluster boundary expand. This behaviour is the hallmark of
dynamical relaxation. In this plot, the steeply accelerating contrac-
tion that signifies core collapse is not present, simply because of
the limited time range covered. Makino (1996), who investigated
single-mass models using a special-purpose (Grape-4) computer,
found core collapse to occur after about six initial relaxation times.
(See his fig. 1 plotting the central density for the 4k run, after not-
ing that trelax corresponds to 62 of his scaled N-body time units.)
Our results, over a more restricted interval, are fully consistent with
Makino’s.

Other researchers, utilizing a variety of techniques, have verified
through simulations that dynamical relaxation occurs in single-mass
systems (e.g. Takahashi 1995; Baumgardt et al. 2003). Nevertheless,
it is worth revisiting the basic energetics of the process. The cluster’s
total energy is conserved, so its dual contraction and expansion
reflects energy transfer from the inside out. According to Fig. 1, the
shell with Mr/M0 = 0.70 grows only slowly. Thus, this shell lies
just outside the core–halo boundary.

We arrive at the same conclusion by calculating directly the mean
rate of energy transfer. Let Kr be the total kinetic energy within
mass Mr, and K̇r the time derivative of this quantity. After finding
the best-fitting straight line to Kr(t) over the full time-span of the
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Figure 2. Profile of the mean energy transfer rate for a single-mass cluster
model (N = 4096). The rate, displayed as the non-dimensional quantity k̇r

given in the text, is plotted against the mass fraction Mr/M0. The shading
indicates the 1σ error in the value of k̇r at each point.

simulation (3trelax), we then calculate K̇r as the slope of this line.
Fig. 2 shows K̇r as a function of the mass fraction Mr/M0. What
we actually display is the non-dimensional quantity k̇r , where

k̇r ≡ K̇r trelax

Ki
, (3)

and where K i is the cluster’s total initial kinetic energy.
The curve in Fig. 2 has a small, central dip, a numerical artefact

of the large scatter in Kr(t) over this region containing relatively
few stars. Thereafter, K̇r rises, attains a maximum, and then mono-
tonically declines. Within the rising portion of the curve, the kinetic
energy �Kr in a shell of thickness �Mr increases with time. That
is,

�Kr = ∂

∂t

(
∂Kr

∂Mr

�Mr

)
�t

= ∂K̇r

∂Mr

�Mr �t

> 0. (4)

A certain, interior region of the cluster is thus gaining kinetic en-
ergy. Self-gravitating systems have negative heat capacity. Thus,
the increasing kinetic energy (and therefore temperature) of the in-
ner core signifies a decreasing total energy.1 Analogous reasoning
shows that the region corresponding to the descending portion of the
K̇r–Mr curve is gaining total energy, and therefore comprises the
halo, which receives its energy from the core. It is natural, therefore,
to locate the core–halo boundary at the peak of the curve, i.e. where
K̇r = 0. According to Fig. 2, this boundary is at Mr/M0 ≈ 0.6, in
agreement with the analysis of Fig. 1.

2.2 Models with a realistic stellar mass distribution

We next eliminate the most egregious simplification in the model,
the assumption of a uniform stellar mass. As has long been appre-
ciated (e.g. Inagaki & Wiyanto 1984; de la Fuente Marcos 1995),

1 This argument is only suggestive, as the gravitational potential energy of
any interior region actually depends on the distribution of mass surrounding
it.

relaxing this assumption has a profound effect on cluster evolution.
We turn again to our recent study of the Pleiades (Paper I), and use,
as our stellar mass distribution, the one characterizing the cluster in
its infancy, soon after gas dispersal. This distribution was a lognor-
mal, joining smoothly on to a power law at higher masses. The full
distribution is given in equation (17) of Paper I, with the parameter
values listed in table I of the paper. Following that study, we take
the minimum and maximum stellar masses to be mmin = 0.08 and
mmax = 10 M�, respectively. (See Section 3.3 for reconsideration of
the maximum mass.) Once again, we assume that the mass density
profile of the cluster is that of an n = 3 polytrope. Cluster members
are all single stars, whose masses are drawn randomly from the as-
sumed stellar distribution. We set N = 4096, and ignore both mass
loss during stellar evolution and any tidal gravitational field.

The left-hand panel of Fig. 3 shows the evolution of Lagrangian
mass shells, in a manner analogous to Fig. 1. In this case, we
note first that radii tend to exhibit more jitter in their evolution.
This characteristic stems from the redistribution of stellar mass
over the crossing time. Even after averaging over the jitter, inte-
rior mass shells do not monotonically contract, as they did before.
These radii initially shrink. However, at some relatively early time
tb = 0.37 trelax, they reach a minimum and begin to expand. (We
will later identify this time with binary formation; see below.) This
expansion continues, with ups and downs, for the remainder of the
simulation. Radii corresponding to Mr/M0 � 0.7 expand from the
start.

For the single-mass model, the shrinking of any interior radius
unambiguously signifies that the average distance between stars is
also diminishing in that region. In the present case, the interpretation
of early contraction is complicated by the phenomenon of mass seg-
regation. The mass of any star is drawn from the same distribution,
regardless of that object’s initial location in the cluster.2 Thus, there
is no mass segregation initially. However, relatively massive stars
quickly drift towards the centre, under the influence of dynamical
friction. As these stars accumulate, the radius of any region of fixed
mass may shrink, even if the average interstellar spacing does not.

To illustrate this point graphically, the right-hand panel of Fig. 3
shows, for the same simulation, the evolution of radii containing a
fixed number fraction, Nr/N, of the cluster. Here, Nr is the interior
number of stars. Since no mass segregation was imposed at the start,
the Lagrangian mass shell with Mr/M0 = 0.10 initially has the same
radius as the ‘number shell’ with Nr/N = 0.10. The radius of the
former contracts at early times, but Fig. 3(b) shows that the radius
of the latter stays constant and later grows. The average interstellar
separation within the volume is not shrinking.

Tracking the radii of Lagrangian mass shells is a widely employed
technique for visualizing cluster evolution. Other authors who have
studied relatively low-N systems under similar assumptions have
documented the early contraction of interior shells. This develop-
ment is said to demonstrate core collapse (e.g. Giersz & Heggie
1997; Hurley et al. 2004). The putative collapse occurs within one
initial relaxation time, much earlier than in single-mass models,
and ends before the central mass density has risen dramatically.
However, contraction of inner mass shells may be due to mass seg-
regation and thus it alone does not definitively show the occurrence
core collapse.

In any cluster containing a range of stellar masses, any tempo-
ral increase in mass segregation obscures the physically distinct

2 More precisely, there is no correlation between a star’s mass and its energy;
see Paper I, section 2.1.
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Figure 3. Evolution of the radii of (a) mass shells and (b) number shells for a cluster with a realistic stellar mass distribution (N = 4096). Each curve is
labelled by the appropriate mass or number fraction of the entire cluster.

phenomenon of core contraction. The latter may still be occurring,
and is in this case to a limited degree. Consider again Fig. 3(b),
where we have added a deeply embedded, number shell correspond-
ing to Nr/N = 0.03. This shell does contract initially, although only
by a relatively small amount before the turnaround at tb. True dy-
namical relaxation occurs at the start, but the accompanying interior
contraction is weak, and is soon aborted.

As in the single-mass model, calculation of the mean energy
transfer rate adds physical insight. Fig. 4 is an energy transfer profile
before turnaround, i.e. over the interval 0 < t < tb. The curve is
similar to that in Fig. 2. The rate K̇r eventually rises smoothly,
peaks a bit beyond Mr/M0 = 0.5, and thereafter declines. Such a
profile is again indicative of dynamical relaxation. Identifying the
core–halo boundary with the peak of the K̇r–Mr curve is consistent
with the pattern of mass shell curves in Fig. 3(b). Thus, the radius
corresponding to Mr/M0 = 0.5 initially contracts slightly, while
that with Mr/M0 = 0.7 expands.

Fig. 5 displays the energy transfer profile after the turnaround.
Here, the mean rate K̇r is determined over the interval

Figure 4. Early-time energy transfer profile for an N = 4096 cluster with
a realistic stellar mass distribution. As in Fig. 2, the shading indicates the
estimated uncertainty at each point.

Figure 5. Late-time energy transfer profile for an N = 4096 cluster with
a realistic stellar mass distribution. As in Fig. 2, the shading indicates the
estimated uncertainty at each point.

tb < t < 3 trelax. The profile is now qualitatively different, and
illustrates a distinct mode of cluster evolution. The kinetic energy
in every mass shell falls with time. So does, therefore, the kinetic
energy of the entire cluster. From the virial theorem, the cluster as a
whole is gaining in total energy. This injection of energy accounts
for the system’s global expansion, as seen in all the radii of Fig. 3 for
t > tb. The central engine driving the expansion is binary heating,
as we verify shortly.

We have run analogous simulations for cluster populations rang-
ing from N = 512 to 16 384. The upper limit was a practical one; the
last case required three months on a desktop computer. All simula-
tions gave qualitatively the same result. The cluster experiences an
early, transient phase of dynamical relaxation. During this epoch,
the central number density rises by only a modest amount, typically
a factor of 2. The central mass density rises by about a factor of 10,
with the larger increase reflecting the onset of mass segregation. In
all cases the end of this early period coincides with the formation of
the first long-lived binary system, with tb ≈0.3 trelax for all N, con-
sistent with the findings of Portegies-Zwart & McMillan (2002).

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 2787–2798



Star clusters under stress 2791

Figure 6. Evolution of the radii of (a) mass shells, and (b) number shells, for the Pleiades (N = 1215). As in Fig. 3, which covers a much longer time, each
curve is labelled by the appropriate mass or number fraction.

From this early epoch until the end of the simulation, the cluster
undergoes global expansion. As we shall next see, even the brief,
transient period of dynamical relaxation was itself an artefact that
vanishes under more realistic initial conditions.

2.3 The example of the Pleiades

One feature of our simplified cluster models is that they consist
initially of only single stars. It is well known that most field stars
of solar-type mass have at least one binary companion (Duquennoy
& Mayor 1991). The observational assessment of binarity in even
the nearest open clusters is challenging, but the indication so far is
that the fraction is comparable to the field-star value (e.g. Bouvier,
Rigaut & Nadeau 1997; Dawson & Schröder 2010). Since, as we
will see, binary heating plays a key role in dynamical evolution, we
should try to gauge the influence of primordial pairs.

For this purpose, we may utilize our own simulated history of
the Pleiades (Paper I). Our initial state, another n = 3 polytrope,
was that which evolved, over the 125-Myr age of the cluster, to a
configuration most closely resembling the current one.3 In a previ-
ous investigation (Converse & Stahler 2008), we found that 76 per
cent of the stellar systems today are binary. The best-fitting initial
state in Paper I consisted essentially of all binaries, with the cor-
responding fraction being 95 per cent. We endowed these binaries
with a lognormal period distribution and a thermal distribution of
eccentricities, reflecting both conditions in the field population and
in the Pleiades itself (Duquennoy & Mayor 1991; Bouvier et al.
1997). In addition, the masses of the primary and secondary stars
were correlated (see section 2.1.2 of Paper I).

Finally, the initial state had a finite degree of mass segregation, i.e.
the masses and energies of stellar systems were also correlated. The
reader is again referred to Paper I for the detailed prescription. Mass
segregation may be characterized quantitatively through the Gini
coefficient (Converse & Stahler 2008, section 4.2). This quantity

3 For most of the simulations in Paper I, including those reviewed here,
we ignored both stellar mass loss and the Galactic tidal field. Adding both
effects had a negligible impact on the evolution up to the present age of the
cluster (Paper I, section 3).

measures how fast the cumulative mass increases outward relative
to the cumulative number of systems. The initial state of the Pleiades
had G ≈ 0.14. The initial number of stellar systems, both binary and
single, was N = 1215.

Fig. 6 shows the evolution of mass- and number-shell radii. Note
that the current age of the Pleiades corresponds to about 0.5 initial
relaxation times. Thus, these plots span a significantly briefer in-
terval than those in Figs 1 and 3. Bearing this fact in mind, we see
that the curves are generally similar to those in Fig. 3. After a brief
initial plunge, the radii of mass shells with Mr/M0 � 0.3 expand,
while the Mr/M0 = 0.1 shell contracts, at least over this time. Num-
ber shells undergo an analogous, early contraction, and then either
remain static (Nr/N = 0.03) or expand. If binaries are energetically
significant, why is the cluster evolution not radically altered? This
is an important question, to which we shall return presently (see
Section 3.2).

The early dips seen in all the curves of Fig. 6 signify that the clus-
ter as a whole initially contracts. This behaviour is an artefact of our
specific method for implementing mass segregation. As explained
in Section 3 of Paper I, the configuration starts out in precise virial
equilibrium. However, the redistribution of higher stellar masses to-
wards the centre alters slightly the gravitational potential from that
associated with an n = 3 polytrope. Over a period lasting about two
crossing times (0.08 trelax), the cluster ‘bounces,’ and then settles
into a configuration that evolves smoothly thereafter.

The bounce does not occur if we impose no mass segregation
initially. In that case, both the mass density of stars and the gravi-
tational potential correspond exactly to an n = 3 polytrope. Fig. 7
shows results from such a simulation. In this ‘Pleiades-like’ clus-
ter, the initial state is identical to that in Fig. 6, but without mass
segregation. Over the time-span covered (0.5 trelax), number shells
either remain static or expand (Fig. 7b). The early contraction of the
innermost shells seen in Fig. 3 never occurs, due to the heating by
primordial binaries. In summary, there is no evidence of classical
dynamical relaxation; the cluster evolves purely through expansion.
The radii of interior mass shells do contract (Fig. 7a) as a result of
increasing mass segregation; the Gini coefficient grows from 0 to
0.15 over this time (see fig. 8 of Paper I).

Returning to the more realistic Pleiades simulation, it is again
instructive to visualize the internal transport of energy. From our
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Figure 7. Evolution of the radii of (a) mass shells and (b) number shells for a Pleiades-like cluster with no initial mass segregation.

Figure 8. Energy transfer profile for the Pleiades. As in Fig. 2, the shading
indicates the estimated uncertainty at each point.

description thus far, there should be no core–halo boundary, iden-
tified by the peaks of the energy transfer profiles in Figs 2 and 4.
Fig. 8, which plots K̇r as a function of Mr, bears out this expectation.
Here, we have computed K̇r by a linear fit over the full time-span
of the simulation. We see that K̇r monotonically falls from zero
to increasingly negative values. (Compare Fig. 5 and the accompa-
nying discussion.) The cluster as a whole is cooling down, and is
therefore gaining in total energy. The Pleiades evolved to its present
state through global expansion, not dynamical relaxation.

3 TH E RO L E O F B I NA R I E S

3.1 First appearance

Let us reconsider the highly idealized clusters with which we be-
gan – one with stars of identical mass and the other with a con-
tinuous range of stellar masses. In both cases, the initial systems
contained neither binaries nor higher order multiple systems. The
evolving, single-mass cluster spawned no new binaries over the

duration of our simulation. However, Makino (1996) found, in his
more extensive investigation of the single-mass model, that bina-
ries do eventually form in the contracting interior, and that their
heating reverses core collapse at t ≈6 trelax. The core subsequently
undergoes the gravothermal oscillations predicted by Bettwieser &
Sugimoto (1984) and Goodman (1987) using fluid models with an
internal energy source.

In our cluster with a realistic stellar mass distribution, the interior
contraction ends much sooner, within a single initial relaxation time.
Is this prompt reversal also due to binary heating? The answer is yes.
We have confirmed that the turnaround at t = tb coincides with the
appearance of the first hard binary. Here, we remind the reader that a
‘hard’ binary is one whose gravitational binding energy exceeds the
average, centre-of-mass kinetic energy of all other stellar systems.
It is only such pairs that donate energy to neighbouring stars during
a close flyby, and thereby become even harder. This is the essence
of binary heating (Heggie 1975).

Why do binaries form so much earlier in this cluster than in
the single-mass model? Closer inspection reveals that these new
systems are comprised of stars that are appreciably more massive
than the average cluster member. This fact is readily understood in
a qualitative sense. In clusters with no initial mass segregation, the
relatively massive stars promptly sink to the centre. Once in close
proximity, these objects have a stronger mutual attraction than other
cluster members, and are thus more prone to forming binaries.

In more detail, a gravitationally bound pair of such stars can only
form by giving energy to a third star. Binary formation is thus a
three-body process. In the traditional analysis of cluster evolution
based on single-mass models, three-body encounters throughout
the bulk of the system are considered too rare to be of significance.
(Binney & Tremaine 2008) show that t∗b, the time for the first binary
to form via this route, is much longer than trelax. Specifically, they
estimate that

t∗
b

trelax
∼ 10 N ln N. (5)

Our superscript on t∗b emphasizes that this time pertains to the highly
specialized case of equal-mass stars. The derivation of equation (5)
assumes that the binary-forming stars reside in a region of average
density. This assumption breaks down if the interactions occur in a
deeply collapsing core. Three-body interactions can proceed here
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efficiently (e.g. Heggie 1984). However, the process is too slow in
regions where the density is not greatly enhanced.4

The situation changes dramatically once the cluster is endowed
with a distribution of stellar masses. Here, binaries can form even
where the density is close to the average. We may demonstrate this
fact through a slight alteration of the heuristic derivation for t∗b given
in Binney & Tremaine (2008). Suppose that stars require a minimum
mass m to be part of a binary. The time �t for a given one of these
objects to come within distance b of another with comparable mass
is

�t ∼ (
fmnb2σ

)−1
. (6)

Here fm is the number fraction of such stars, n is the average cluster
number density and σ the velocity dispersion. During this encounter,
there is a probability p ∼ 4πn b3/3 that a third star will also be within
the interaction distance b. This star can have the average mass
〈m〉 ≡ M0/N. Thus, the time for the original star to suffer a binary-
forming triple encounter is about �t/p = 3/(4πfmn2b5σ ). There
are fm N such stars in the cluster. The time for any such star to form
a binary is

tb ∼ 3

4πNf 2
mn2b5σ

. (7)

In order for a hard binary to form, the gravitational potential
energy of the binary must be equal to or greater than the average
kinetic energy in the cluster:

Gm2

b
∼ 〈m〉σ 2. (8)

Thus,

tb ∼ 3σ 9〈m〉5

4πNf 2
mn2G5m10

. (9)

From the virial theorem, σ 2 ∼ G N 〈m〉/rv, where rv is the cluster’s
virial radius. Using this expression along with the approximation
that n ∼ 3N/(4πr3

v ), we find

tb ∼ 4πN 3/2r3/2
v

3f 2
mG1/2〈m〉1/2

( 〈m〉
m

)10

. (10)

Now the relaxation time from equation (1) may be approximated as

trelax = N√
8 ln N

r3/2
v

G1/2N 1/2〈m〉1/2
. (11)

Dividing equation (10) by equation (11) yields

tb

trelax
∼ 10 N ln N

f 2
m

( 〈m〉
m

)10

, (12)

which is a simple modification of the analogous equation (5).
On the right-hand side of equation (12), the factor f −2

m is necessar-
ily greater than unity. On the other hand, (〈m〉/m)10 is, in practice,
so small that tb < t∗b. Consider, for example, the models described
in Section 2.2, which had a stellar mass distribution appropriate for
the infant Pleiades. Here, 〈m〉 = 0.36 M�. In our N = 4096 cluster,
we find empirically that the minimum mass in any newly formed
binary is m ≈ 4 M�; the corresponding fm-value is 8 × 10−3. Equa-
tion (12) then predicts that tb/trelax ∼ 0.2, in good agreement with
our numerical results.

4 Although binaries could, in principle, form via three-body interactions
within globular clusters, those that eventually arrest core collapse are actu-
ally extremely tight systems created earlier by tidal capture (Fabian, Pringle
& Rees 1975).

This derivation is, of course, highly simplified, and the quantita-
tive result above should not be given too much weight. The relative
velocity of an encounter in the core will typically be larger than in
the rest of the cluster, and the core density will be higher than the
average. A more complete derivation of tb would also consider the
physical basis for the minimum mass m. Presumably, this limit is
set by the rate at which dynamical friction allows stars of various
mass to drift inward. We will not embellish the argument along
these lines, but simply note that equation (12) adds justification for
our main points: (1) the rate of binary formation is very sensitive
to the stellar mass distribution and (2) even in hypothetical clusters
composed entirely of single stars, binaries form relatively quickly.
It is only by adopting the extreme assumption that these single stars
have identical mass that binary formation can be delayed to the
point of core collapse.5

3.2 Energy input

A hard binary that resides within a cluster, no matter how it formed,
adds energy to the whole system. The process, like the creation of
new pairs, is a three-body interaction. As a result of the encounter,
the binary usually tightens and releases energy. This heating ac-
counts for the expansion of both the mass and number shells in
Fig. 3, for t > tb. Expansion driven by binaries is global, and differs
qualitatively from the dual contraction and expansion seen in the
single-mass model (Fig. 1).

This difference is also apparent when we view the evolution of the
cluster’s aggregate energy. First, we need to distinguish internal and
top-level energies. In the first category is the gravitational binding
energy of each binary and the kinetic energy of both component
stars with respect to their centre of mass. In the top-level category
are the centre-of-mass kinetic energies of all bound stellar systems,
whether single or multiple, and the gravitational potential energy
of this array. Thus, the kinetic energy Kr considered previously was
actually a top-level quantity. The cluster’s total energy E0 is the sum
of the two contributions:

E0 = Eint + Etop. (13)

Here, we are ignoring the relatively small amount of energy carried
off by escaping stars. In the absence of an external tidal field, E0

remains strictly constant. Binary heating, whether by creation of a
new pair or interaction of an existing pair with single stars, lowers
Eint and transfers the same amount of energy to Etop.

The solid curve in Fig. 9 shows the evolution of the top-level
energy in the model cluster with a realistic stellar mass distribution
(N = 4096). Here Etop is normalized to Ei, its initial value. Since this
cluster begins with all single stars, Etop and E0 are identical at the
start. Upon the formation of the first hard binary at t = 0.37trelax, Etop

takes a substantial, upward jump. Subsequent jumps occur whenever
new hard binaries form, or when existing ones impulsively heat the
cluster. As an instructive comparison, the dashed curve in Fig. 9
shows Etop for the single-mass model described in Section 2.1.
The curve is very nearly flat. Despite some weak and transient
interactions, no stable, hard binaries form over the span of the
simulation.

One interesting feature of Fig. 9 is that the jumps tend to diminish
with time. Indeed, �Etop scales roughly with E0, where the latter
approaches zero as the cluster inflates. To see the origin of this
scaling, consider in more detail the energetics of the three-body

5 Binary formation is also delayed by stellar mass loss; see Section 4.
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Figure 9. Energy evolution for an N = 4096 cluster with a realistic mass
distribution. The dashed curve shows the evolution in the analogous, single-
mass model.

interaction. The energy released as the binary tightens is shared
by that pair and the passing star. Both recoil from the site of the
original encounter.6 In our simulations, the binary is lifted to a
much higher orbit, but usually does not become unbound. The pair
then drifts back down, via dynamical friction, and gives its energy
to surrounding stars. If �Eb denotes this contribution to the total
energy change �Etop, then �Eb � mbσ

2, where mb is the binary
mass.

The recoiling single star, of mass 〈m〉, rockets away at high speed,
much larger than σ , and is lost to the cluster. On its way out, the star
does work �Es = 〈m〉�g on the system. Here, �g is the depth of the
top-level gravitational potential well at the interaction site, which
is close to the cluster centre. Now both σ 2 and �g are proportional
to Etop itself. Thus, the total energy change, �Etop = �Eb + �Es,
is also proportional to Etop.

The time when the first hard binary appears, tb = 0.37 trelax, is
also when the cluster begins to expand (Fig. 3). Thus, the binary
immediately begins to heat the system through interactions with its
neighbours. Eventually, the binary itself is ejected as a result of such
an encounter, to be replaced later by another. Over the course of the
simulation, a total of four hard binaries arise. But a snapshot of the
cluster at any time shows it to contain either a single binary or none
at all. For example, the flat portion of the energy curve between
t = 0.51 trelax and 0.70 trelax represents such a barren period. It is
indeed remarkable, as many investigators have noted, how a handful
of binaries control the fate of a populous cluster.

In more detail, there is variation of the heating rate with N.
Smaller systems experience fewer binary interactions. On the other
hand, each interaction creates a larger �Etop relative to E0. Larger
systems have more frequent interactions, with each contributing less
relative energy. In the end, the rate of energy input actually varies
little, when averaged over a sufficiently long period.

What if the cluster is seeded with many binaries initially? Fig. 10
shows the evolution of the top-level energy for the Pleiades simu-
lation. There are now many binaries even at the start, and thus no
initial period of constant Etop. Remarkably, however, the evolution

6 In some cases, the single star changes places with one of the binary com-
ponents (Heggie, Hut & McMillan 1996). This detail need not concern us.

Figure 10. Energy evolution for the Pleiades.

is quite similar to the case of no primordial binaries. The top-level
energy is changed in a few discrete jumps. These few major inter-
actions always involve binary (or triple) systems composed of the
few most massive stars (see also de la Fuente Marcos 1996b).

The important lesson is that only a special subset of binaries
strongly influences a cluster’s evolution. These are systems which
are relatively massive, wide enough to have a significant interaction
cross-section with other stars, and yet tight enough to be hard. To be
sure, the primordial binaries in the Pleiades-like simulation shown
in Fig. 7 do halt the initial contraction. Relatively little energy input
is required to do so. Virtually all primordial binaries are either of too
low a mass, or are so tight that they effectively interact as a single
system. It is the subsequent coupling of relatively few massive stars
that inject much greater energy and principally drive the cluster’s
expansion.

3.3 Very massive stars

We have seen how binary heating can dominate a cluster’s evolution.
For a realistic stellar mass spectrum, the effect begins very quickly
in less than a single relaxation time. Under these circumstances, the
cluster is still very far from the point of true core collapse.

Following our Pleiades study (Paper I), we have set the maximum
mass at mmax = 10 M�. The reasoning here was that more massive
objects would have ionized the parent cloud, allowing the stars to
disperse before they could form a bound cluster. In any event, it
is instructive when elucidating basic physical principles, to relax
this assumption and gauge the effect. We now allow stars in our
N = 4096 cluster to be drawn from the same mass function as
before, but with a nominal upper limit of mmax = 100 M�. In
practice, no star ever realizes this mass; the largest generated is
about 60 M�. Again, there are no primordial binaries.

Based on our earlier arguments, we would expect binary forma-
tion to begin even sooner. Indeed this is the case. The first stable,
hard binary forms at tb = 0.18 trelax, a factor of 2 earlier in time.
Fig. 11 shows the evolution of both Lagrangian mass and number
shells. By either measure, the cluster undergoes global expansion
at all radii. Not surprisingly, there are detailed differences from the
mmax = 10 M� case. The apparent early contraction of the inner-
most mass shells is now entirely due to mass segregation. Even the
number shell with Nr/N0 = 0.03 expands from the start.
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Figure 11. Evolution of the radii of (a) mass shells and (b) number shells for an N = 4096 cluster that includes very massive stars. As in Fig. 3, each curve is
labelled by the appropriate mass or number fraction.

A closer analysis shows that there is again never more than a
single binary in the cluster at any instant, although the specific pair
changes identity in time. Both components of this pair are always
among the top five stars by mass. These binaries generate especially
strong heating.

Fig. 12 shows the evolution of the top-level energy. For compari-
son, we also reproduce the analogous plot from Fig. 9 for the simu-
lation with mmax = 10 M�. Binary heating now begins much sooner,
and the individual three-body encounters inject larger amounts of
energy. This result corroborates our earlier conclusion that �Eb is
proportional to the mass of the binary system.

In the presence of very massive stars, the cluster energy, |E0|,
diminishes to only 7 per cent of its initial value over the time
considered. In some of our simulations, the heating was so severe
as to effectively dissolve the cluster, inflating it to thousands of times
its initial size (in the absence of a tidal field). Globular clusters may
have been born in parent clouds so massive that even multiple stars
producing HII regions do not disrupt them (Kroupa & Boily 2002).

Figure 12. Energy evolution for an N = 4096 cluster that includes very
massive stars. For comparison, the dashed curve reproduces that from Fig. 9,
where the maximum mass is 10 M�.

Why, then, are young globular clusters not dispersed by binary
heating? How do they evolve to the point of core collapse? To
answer these questions, we now include the last key ingredient –
stellar evolution.

4 TH E RO L E O F S T E L L A R EVO L U T I O N

It has long been appreciated that the mass loss associated with
stellar evolution can have a dramatic effect on the early life of a
cluster (Angeletti & Giannone 1977; Applegate 1986; Terlevich
1987; Bastian et al. 2008). As its largest stars die out, the cluster’s
total mass can decrease significantly. The loss of gravitational bind-
ing causes the cluster to expand. This initial phase of expansion,
which is ubiquitous in simulations, is quickly stifled because lower
mass stars survive much longer.

The loss of the cluster’s most massive stars has another effect,
more relevant here, that is not as widely appreciated (see however
de la Fuente Marcos 1996a). As we have seen, it is these same stars
that reverse core contraction and drive global expansion through
binary formation and heating. Because of mass loss, however, the
objects die out before they can pair with others. Stellar evolution
thus tamps down binary heating and postpones the global expansion
that this heating drives.

The code STARLAB is able to track stellar evolution, including
mass loss, by applying analytic fitting formulae. Once we switch
on this module, however, we need to give an explicit size scale
for our cluster, in order to set the relation between dynamical and
stellar evolutionary times. We select a virial radius of rv = 4 pc as a
representative value. In our stellar mass function, we continue to set
mmax = 100 M�. As before, we focus on the case N = 4096. Our
cluster has an initial crossing time of 8 Myr, and an initial relaxation
time of trelax = 570 Myr. We follow the evolution of the cluster for
8.5 Gyr, which is about 15 relaxation times.

Fig. 13 shows the evolution of Lagrangian radii. At first glance,
the pattern looks similar to Fig. 11, which shows the same cluster,
but without stellar evolution. Closer inspection reveals important
differences. The cluster now undergoes a rapid expansion. During
the first 800 Myr, corresponding to 1.5 initial relaxation times, the
virial radius increases by a factor of 2. Once the maximum mass of
the stars falls below about 2 M�, the expansion slows.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 2787–2798



2796 J. M. Converse and S. W. Stahler

Figure 13. Evolution of the radii of (a) mass shells and (b) number shells for an N = 4096 cluster that includes stellar mass loss. As in Fig. 3, each curve is
labelled by the appropriate mass or number fraction.

The next, slower phase of expansion lasts until about 3 Gyr, or
5.5 trelax. Here, heating is provided by an 18 M� black hole left
behind by a formerly 67 M� star. Due to its mass, it readily forms
a binary system with another star, and this system is the source of
the heating. The quantitative details of this phase are as uncertain
as our knowledge of the late stages of massive stellar evolution. For
example, Hurley, Pols & Tout (2000) find that the same 67 M� star
leaves behind a 4 M� black hole, which would create much less
heating and expansion.

Neither of these phases are in the previous Fig. 11, which omitted
stellar evolution. Instead there is an initial brief contraction of the
innermost mass shells. As noted earlier, the innermost number shells
do not contract, so we are actually witnessing the effects of mass
segregation. In the present case, significant contraction of both the
mass and number shells occurs. The 18 M� black hole and its
companions have been ejected, and no new binaries form. Hence
the system is undergoing true dynamical relaxation. Compared to
the system with no stellar evolution, this phase is quite protracted,
lasting 6 trelax.7 Again, the most massive binaries that would have
halted contraction earlier have died off.

Eventually, however, new binaries do form. As before, it is the
highest mass stars present that interact and cause heating. The clus-
ter thereafter enters a prolonged phase of global expansion. This
lasts through the end of the simulation. In summary, stellar mass
loss has delayed binary formation, and therefore cluster expansion,
but not prevented their occurrence.

5 D ISCUSSION

5.1 Open versus globular clusters

The simulations we performed without stellar evolution all found
that tb, the epoch marking the onset of binary formation, was a
fixed fraction of trelax. We have just seen, in the specific case of
N = 4096 that stellar mass loss modifies this result, increasing

7 Due to the earlier expansion, the relaxation time at the start of core con-
traction is 10 times longer than its initial value. The contraction phase lasts
for only 0.6 times this readjusted and more appropriate relaxation time.

tb/trelax. Another path to the same conclusion comes from equa-
tion (12). Stellar evolution lowers the minimum mass m of stars that
are around to form a hard binary that can heat the cluster. The ratio
〈m〉/m thus increases, and tb/trelax rises accordingly.

As we consider clusters of higher N, a basic point to note is
that trelax itself increases. If the average mass 〈m〉 is unchanged,
then equation (11) shows that trelax scales as N1/2r3/2

v , ignoring the
logarithmic factor. Thus, for similar virial radii rv, clusters of higher
population take longer to relax. The binary formation time tb in
these systems is longer, and, because of stellar evolution, is a higher
fraction of trelax itself.

By a given age, therefore, a cluster of higher population has expe-
rienced more dynamical relaxation. That is, its core has contracted
further. In our view, this trend represents the critical difference be-
tween open and globular clusters. The former undergo, at best, a
brief, tepid period of core contraction. In our Pleiades simulation,
even this mild contraction is stifled by heating from primordial bina-
ries. Globular clusters, on the other hand, undergo much longer pe-
riods of dynamical relaxation. In some cases, this prolonged epoch
results in true core collapse.

5.2 Cluster death

Throughout this study, we have carried out our simulations to ar-
bitrary times, just long enough to illustrate the main evolutionary
phases. The smaller-N groups on which we focus are eventually
destroyed tidally, either by the general Galactic field or by the close
passage of giant molecular clouds. Binney & Tremaine (2008, equa-
tion 8.57) give the cloud disruption time-scale as

tdis = 250 Myr

(
M

300 M�

)1/2 (
rh

2 pc

)−3/2

, (14)

where rh is the half-mass radius. Consider again our simulation
of an N = 4096 cluster, with stellar evolution included. Here,
M = 1700 M� and rh = 3.3 pc. According to equation (14),
tdis = 280 Myr or 0.5 trelax. Fig. 13 shows that the cluster is torn
apart very early, during the initial phase of rapid expansion accom-
panying the death of its most massive stars.

Tidal disruption by passing clouds has long been considered the
dominant cluster disruption mechanism (Spitzer 1958). As noted,
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however, even the Galactic tidal field will eventually do the job. In
our Pleiades simulation of Paper I the cluster was largely destroyed
in this way by 700 Myr. An isolated cluster of this size would be
just entering its phase of weak contraction. Because of this external
tidal field, however, the simulated Pleiades never even began to
contract, but globally expanded until it totally dissolved. Such tidal
disruption may account for the mass-independent pattern of cluster
death observed in the Antennae galaxies (Fall, Chandar & Whitmore
2009) as well as the Magellanic Clouds (Chandar, Fall & Whitmore
2010).

A few open clusters do survive for ages much longer than the
ones just mentioned (Friel 1995). These lie in the outer reaches of
the Galaxy, where the encounter rate with giant molecular clouds
is relatively low, and the general tidal field is also weaker. Our
isolated N = 4096 cluster eventually begins core contraction at 3
Gyr, corresponding to 6 trelax. Even the weakened Galactic tidal
field will begin to disrupt the system by this age, as seen in the
simulation of the even richer system M67 (Hurley et al. 2005).
The lesson here is that, while open clusters can in principle en-
ter a phase of tepid core contraction, none reaches this point in
reality.

5.3 Summary

The classical theory of dynamical relaxation is relatively simple,
an elegant illustration of how systems with negative heat capac-
ity evolve (Lynden-Bell 1999). However the theory does not de-
scribe accurately real clusters, at least those of modest population
on which we have focused. The two main factors changing the pic-
ture are binary heating and stellar evolution. Both processes are,
of course, well understood, but their combined effect has not been
appreciated.

All clusters are born with a large fraction of binaries, but these
do not provide the largest effect. It is the system’s most massive
stars coupling together that generate most of the heating through
three-body interactions. This heating easily reverses incipient core
contraction, so that the central density climbs only slightly before
the new phase of global expansion begins. This phase resembles, at
least qualitatively, the post-collapse evolution described by Hénon
(1972). However, the reversal from contraction occurs at much
lower density than in earlier accounts.

Mass loss accompanying stellar evolution modifies the picture,
but does not change it qualitatively. Since the most massive stars die
out before they can couple with others, the degree of binary heating,
and therefore the vigor of global expansion, is less. In addition, the
earlier phase of core contraction lasts longer and leads to a higher
central density before reversal. Both modifications increase with
the cluster population N. We thus see why some globular clusters
indeed reach the point of true core collapse, which can be reversed
only by the tightest of binaries.

The new picture of cluster evolution presented here is more
complex than the classical one, but it is motivated by the basic
physical effects that are incorporated in modern numerical simula-
tions. With the benefit of hindsight, it is easy to see why earlier,
simplified methods reinforced the impression that dynamical re-
laxation is ubiquitous. In single mass models, binary formation is
so delayed that it becomes irrelevant. Statistical models, based on
solving the Fokker–Planck equation, neglect three-body effects en-
tirely. Finally, the contraction of Lagrangian mass shells is not a
reliable sign of core contraction, but may reflect a different phe-
nomenon, mass segregation. Our new picture is itself far from com-
plete. Future simulations carried out at higher N will reveal in detail

how the transition is made to a more vigorously contracting central
core.
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Dawson S. A., Schröder K. P., 2010, MNRAS, 404, 917
de la Fuente Marcos R., 1995, A&A, 301, 407
de la Fuente Marcos R., 1996, A&A, 308, 141
de la Fuente Marcos R., 1996, A&A, 314, 453
Dias W. S., Alessi B. S., Moitinho A., Lepine J. R. D., 2002, A&A, 416,

125
Djorgovski S. G., King I. R., 1986, ApJ, 305, L61
Duquennoy A., Mayor M., 1991, A&AS, 88, 241
Fabian A. C., Pringle J. E., Rees M. J., 1975, MNRAS, 172, 15
Fall S. M., Chandar R., Whitmore B. C., 2009, ApJ, 704, 453
Friel E., 1995, ARA&A, 33, 381
Giersz M., Heggie D. C., 1997, MNRAS, 286, 709
Goodman J., 1987, ApJ, 313, 576
Heggie D. C., 1975, MNRAS, 173, 729
Heggie D. C., 1984, MNRAS, 206, 179
Heggie D. C., Mathieu R. D., 1986, in Hut P., McMillan S. L. W., eds,

Lecture Notes in Phys., Vol. 267, The Use of Supercomputers in Stellar
Dynamics. Springer-Verlag, Berlin, p. 233

Heggie D. C., Hut P., McMillan S. L. W., 1996, ApJ, 467, 359
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