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ABSTRACT

We explore, through a simplified, semianalytic model, the formation of dense clusters containing massive stars.
The parent cloud spawning the cluster is represented as an isothermal sphere. This sphere is in nearYforce balance
between self-gravity and turbulent pressure. Self-gravity, mediated by turbulent dissipation, drives slow contraction
of the cloud, eventually leading to a sharp central spike in density and the onset of dynamical instability. We suggest
that, in a real cloud, this transition marks the late and rapid production of massive stars. We also offer an empirical
prescription, akin to the Schmidt law, for low-mass star formation in our contracting cloud. Applying this prescription
to the Orion Nebula Cluster, we are able to reproduce the accelerating star formation previously inferred from the
distribution of member stars in the HR diagram. The cloud turns about 10% of its mass into low-mass stars before
becoming dynamically unstable. Over a cloud free-fall time, this figure drops to 1%, consistent with the overall star
formation efficiency of molecular clouds in the Galaxy.

Subject headinggs: ISM: clouds — open clusters and associations: individual (Orion Nebula Cluster) —
stars: formation — stars: preYmain-sequence

1. INTRODUCTION

There is growing evidence that the formation of stellar groups
is a relatively slow process. More specifically, a star cluster ap-
pears within its parent molecular cloud over a period that is long
compared to the cloud’s free-fall time, as gauged by themean gas
density. Tan et al. (2006) have summarized several lines of argu-
ment leading to this conclusion. The gas clumps believed to form
massive clusters appear round, indicating that they are in force
balance, and not in a state of collapse. Massive clusters them-
selves have smooth density profiles, again in contrast to a dynam-
ical formation scenario. The observed flux in protostellar outflows
indicates a slow accretion rate and therefore a long star formation
timescale. Finally, the placement of young clusters in the HR
diagram yields age spreads in excess of typical free-fall times
(see also Palla & Stahler 2000).

Many researchers have performed direct numerical simula-
tions of molecular clouds; their results also bear on the issue of
the star formation timescale. In a typical simulation, the compu-
tational volume is filled with a magnetized, self-gravitating gas
that has a turbulent velocity field. If the turbulence is only im-
pressed initially, it dies away in a crossing time, and most of the
gas condenses into unresolvably small structures (e.g., Klessen
et al. 1998). Since the crossing and free-fall times are similar in a
molecular cloud, some authors have concluded that all clouds
produce stars rapidly, while in a state of collapse (Hartmann et al.
2001). Others have used empirical arguments to make the same
point (Elmegreen 2000). This view is at odds with the observa-
tions concerning cluster-forming clouds cited above. Moreover,
the simulations show that, if turbulence is driven throughout the
calculation, the rate of star formation can be reduced to a more
modest level (Mac Low&Klessen 2004).1 It is plausible that the
turbulence is indeed driven by the cloud’s self-gravity, a point we
will amplify later.

The emerging picture, then, is that molecular clouds both
evolve and create internal clusters in a quasi-static fashion. That is,

the structure as a whole is nearly in force balance, until it is even-
tually destroyed by the ionizing radiation and winds from the
very stars it spawns. The inferred masses of all clouds larger than
dense cores greatly exceed the corresponding Jeans value, eval-
uated using the gas kinetic temperature. Thus, self-gravity must
be opposed by some force beyond the relatively weak thermal
pressure gradient. The extra support is generally attributed to
MHDwaves generated by internal turbulent motion (Elmegreen
& Scalo 2004). This motion, which is modeled in the numerical
simulations just described, imprints itself on molecular line tran-
sitions, giving them their observed superthermal width (Arons &
Max 1975; Falgarone et al. 1992).

In this paper, we follow the quasi-static contraction of a spher-
ical cluster-forming cloud. Contraction is facilitated by the tur-
bulent dissipation of energy. This investigation continues and
extends an earlier one that was part of our study of the Orion
Nebula Cluster (ONC; Huff & Stahler 2006, hereafter Paper I ).
Here we track in more detail the changing structure of a generic
cloud, taken to be in near-balance between self-gravity and tur-
bulent pressure. We find that contraction eventually causes the
density profile to develop a sharp central spike. Such a region of
growing density is a plausible environment for the birth of mas-
sive stars (see Stahler et al. 2000).

We also track, using a simple empirical prescription, the for-
mation of low-mass stars in our contracting cloud. For reason-
able parameter values, stellar births occur throughout the cloud
over a period of order 107 yr. The global rate of star formation
rises with time monotonically; i.e., the formation accelerates.
Extended, accelerating production of stars is also found empir-
ically when one analyzes clusters in the HR diagram (Palla &
Stahler 2000). Indeed, it is not difficult to match specifically the
global acceleration documented in the ONC.Here the star forma-
tion rate depends on cloud density in the same manner as the
classic Schmidt law.

In x 2 below, we present the basic physical assumptions under-
lying our model. We also give a convenient nondimensional
scheme. In x 3, we introduce our treatment of turbulent dissipa-
tion and calculate the interior evolution of the cloud as it contracts
toward the high-density state. Section 4 offers our prescription for
low-mass star formation and compares the resulting birthrate with

1 The actual rate of condensation depends on the magnitude of the sonic
length; i.e., the size scale of turbulent eddies whose velocity matches the local
sound speed (Vázquez-Semadeni et al. 2003; Krumholz & McKee 2005).
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the ONC data. Finally, x 5 discusses the broader implications of
our findings, as well as their utility for future work.

2. FORMULATION OF THE PROBLEM

2.1. Physical Assumptions

We focus on molecular cloud clumps that are destined to pro-
duce the highest density clusters; i.e., those containing massive
stars near their centers. Shirley et al. (2003) used CS observa-
tions to study a sample of 63 clumps already containing massive
stars, as evidenced by water maser emission. These clouds are
nearly round, with median projected axis ratios of 1.2. It is thus
a reasonable approximation, and certainly a computationally
advantageous one, to take our model cloud to be spherically
symmetric.

The clumps observed by Shirley et al. (2003) have a median
radius of 0.32 pc and a mass of 920M�. A cloud of this size and
mass has internal turbulent motion well in excess of the sound
speed, where the latter is based on the typical gas kinetic temper-
ature of 10 K (Larson 1981). This bulk motion excites a spectrum
of MHDwaves; i.e., perturbations to the interstellarmagnetic field
threading the cloud (Falgarone & Puget 1986). Such waves exert
an effective pressure that can, at least in principle, support the
cloud against global collapse (Pudritz 1990).

Fatuzzo & Adams (1993) studied the mechanical forcing due
toMHDwaves propagating in a one-dimensional, self-gravitating
slab. They considered two cases: a slab with an embedded mag-
netic field oriented parallel to the slab plane, and one with an
internal field in the normal direction. In the first case, Fatuzzo &
Adams showed that magnetosonic waves provide a normal
force. In the second, it is Alfvén waves that exert the force, also
in the normal direction. Thus, Fatuzzo & Adams verified ex-
plicitly that the waves counteract gravity, even in the absence of
wave damping.

McKee & Zweibel (1995) extended this result. Using the
pioneering analysis of Dewar (1970), they showed that Alfvén
waves generated by a turbulent wave field exert an isotropic pres-
sure, regardless of the background geometry. McKee & Zweibel
derived a simple dependence of the wave pressure P on the local
density:

P / �1=2: ð1Þ

If we ignore the relatively small thermal pressure, then the cloud
can be described as an n ¼ �2 polytrope.

Are the structures of real clouds consistent with this polytropic
wave pressure? One indirect argument indicates that they are not.
McKee & Zweibel (1995) also demonstrated that P is propor-
tional to � times the square of the (randomly oriented) velocity
fluctuation �v. It follows that

�v / ��1=4 ð2Þ

in this model. Now the density in an n ¼ �2 polytrope tends to
approach a power law outside the central plateau, such that � is
proportional to r�4=3. From equation (2), it follows that �v is
proportional to r1

=3.
Consider the nearly spherical cloud, now gone, that produced

the ONC. This cloud was recently driven off by the Trapezium
stars, which themselves have ages of about 105 yr (Palla &
Stahler 2001). The disruption itself occurred well within the clus-
ter crossing time of about 106 yr. Hence, the present-day velocity
dispersion of the stars should reflect the prior �v of the gas. But the
dispersion of ONC proper motions has negligible variation from

the center to the outskirts of the cluster (Jones & Walker 1988).
These measurements span at least 1 decade in radius, over which
�v should vary by a factor of 2.2, according to the polytropic
relation.
Our conclusion, based on this admittedly limited evidence, is

that a more realistic model of the internal turbulence has a spa-
tially constant velocity dispersion.2 If we further appropriate the
relationship between P and �v derived by McKee & Zweibel
(1995), we are then positing an isothermal equation of state:

P ¼ �a2
T : ð3Þ

Here aT, the effective isothermal sound speed, is taken to be a
fixed constant at a given instant of time. This same quantity
varies temporally; indeed, this latter variation essentially drives
the cloud’s evolution. We emphasize that aT does not, as in or-
dinary gas dynamics, give the magnitude of random, microscopic
velocities. Instead, this quantity represents, however crudely, the
bulk motion of turbulent eddies; these eddies create the pressure
P via MHD waves.
Since we are modeling the cloud as an isothermal sphere, we

face the familiar difficulty that its mass is infinite unless the con-
figuration is bounded externally. We therefore picture the cloud
as being surrounded by a low-density, high-temperature medium
with an associated pressure P0. This latter quantity is also the
pressure at the boundary of our spherical cloud. The cloud den-
sity at the boundary, �0, is found from equation (3), given knowl-
edge of a2

T .

2.2. Nondimensional Scheme

The mathematical description of a self-gravitating, isothermal
cloud in hydrostatic balance is well known (see chap. 9 of Stahler
& Palla 2004). All structural properties follow from the isother-
mal Lane-Emden equation:

1

� 2
d

d�
� 2

d 

d�

� �
¼ exp (� ); ð4Þ

with boundary conditions  (0) ¼  0(0) ¼ 0. Here  is the di-
mensionless form of the gravitational potential �g:

 � �g=a
2
T : ð5Þ

The nondimensional radius � is obtained from the dimensional
radius r using G, a2

T , and the central density �c:

� � 4�G�c
a2
T

� �1=2

r: ð6Þ

Equation (4) was derived using both Poisson’s equation and
the condition of hydrostatic equilibrium. The latter can be recast
as a relation between the density at any radius, �, its central value,
�c, and the potential:

� ¼ �c exp � ð Þ: ð7Þ

The full, dimensional mass M0 follows by integration of � over
mass shells. Using equation (4) to evaluate the integral, one finds

M0 ¼
a3
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��cG 3
p � 2

d 

d�

� �
0

: ð8Þ

2 Inside giant cloud complexes, the observed velocity dispersion increases
with the size of the substructure (Ossenkopf & Mac Low 2002). Again, we are
focusing on a single clump, where such considerations do not apply.
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Here the subscript denotes the cloud boundary. Similarly, we
will use R0 for the radius of that point where the internal cloud
pressure has fallen to P0.

In this standard formulation, all nondimensional variables are
defined through the basic quantities a2

T , �c, and G. Although the
standard variables will remain useful, the scheme itself is not
well suited to describing cloud evolution at fixed mass. For this
purpose, we will also utilize a second nondimensional scheme
that is based on M0, P0, and G.

Let k be the new nondimensional radius and � the nondimen-
sional effective sound speed. These are defined through

k� P
1=4
0

G1=4M
1=2
0

r; ð9Þ

� 2 � a2
T

G3=4M
1=2
0 P

1=4
0

: ð10Þ

We further denote as � the nondimensional density:

�� G3=4M
1=2
0

P
3=4
0

�: ð11Þ

Since we will be discussing temporal evolution, we define a non-
dimensional time through

� � G1=8P
3=8
0

M
1=4
0

t: ð12Þ

It will be useful to relate new nondimensional quantities to old
ones. Thus, equation (6) tells us k as a function of �:

k ¼

ffiffiffiffiffiffiffiffiffiffi
� 2

4��c

s
�: ð13Þ

For the central density appearing here, �c, we use equation (7),
evaluated at the cloud boundary:

�c ¼
exp  0ð Þ
� 2

: ð14Þ

Finally, � itself can be written in terms of standard variables by
using equation (8):

� 4 ¼
ffiffiffiffiffiffi
4�

p
� 2

d 

d�

� ��1

0

exp  0=2ð Þ: ð15Þ

3. CLOUD EVOLUTION

3.1. Internal Structure

We now consider a sequence of isothermal spheres of fixed
mass, all embedded in the same external pressure. We can de-
scribe each structure using the new nondimensional variables.
The sequence is characterized by a single parameter, the center-
to-edge density contrast; we denote this ratio as �. From equa-
tion (7), � can also be written as

� ¼ exp  0ð Þ: ð16Þ

Since  (� ) is a known function, there is a one-to-one corre-
spondence between our fundamental parameter � and �0, the old
nondimensional radius. The potential  increases monotonically

with �, so � likewise increases with �0. The lowest value of � is
unity, corresponding to �0 ¼ 0.

The internal velocity dispersion � varies along our sequence.
We can track this change through equation (15). Thus, for each
selected value of �, we first find the value of  0 from equa-
tion (16). From knowledge of the function  (� ), we find the
corresponding value of �0, as well as (d /d�)0. Equation (15)
then yields �.

It is equally straightforward to obtain the internal density
profile, �(k), of any model. If we know  0 and �, equation (14)
gives the central density, �c. Proceeding outward, equation (13)
gives the value of � corresponding to each value of k. Again us-
ing  (�), equation (7) yields the density ratio, �/�c ¼ exp ( ).
When we get to the edge, k ¼ k0, we find that �0 /�c � ��1 ¼
exp (� 0), in agreement with equation (16).

Figure 1 displays graphically the change of the cloud’s struc-
ture as a function of �. Here we have plotted the radius, k(� ),
of selected mass shells. As expected, a shell in the deep interior
monotonically shrinks. Other shells, however, turn around. With
rising values of �, an increasing fraction of the cloud mass starts
to expand. Such expansion costs energy. Thus, configurations of
very high values of � are not physically accessible, as we will
see.

3.2. Enthalpy and Dynamical Stability

The lower dashed horizontal line in Figure 1 corresponds to a
�-value of 14.1. This is the Bonnor-Ebert density contrast. In the
standard analysis, clouds of higher contrast are dynamically un-
stable (Ebert 1955; Bonnor 1956). We recall, however, that this
instability arises from perturbations of a cloud held at fixed tem-
perature. In contrast, our sequence has varying effective sound
speed. The Bonnor-Ebert contrast no longer marks a stability
transition. Nevertheless, this value, which we denote as �min , is
still of interest. It signifies, at least in an approximate way, the
point where self-gravity starts to overwhelm external pressure as

Fig. 1.—Evolution of the cloud’s internal structure. Shown are the radii of
selected Lagrangianmass shells as a function of the density contrast �. From left
to right, the five shells enclose 0.2, 0.4, 0.6, 0.8, and 1.0 times the total cloud
mass. Also indicated are the minimum �-value for self-gravitating clouds and
the maximum value for dynamical stability.
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the main compressive force. Our description of cloud evolution
will henceforth focus on such gravity-dominated configurations;
i.e., those for which � > �min.

To analyze stability in the present sequence, we first need to
invoke thermodynamics. We showed in Paper I that energy
dissipation in an isothermal cloud results in a decrease of the total
enthalpy. Returning to dimensional notation, equation (A10) of
Paper I stated that

dH

dt
¼�L; ð17Þ

where L is the luminosity. The enthalpy H is the generalization,
to a self-gravitating gas, of the classic definition:

H � Etherm þ Egrav þ P0V ; ð18Þ

where Etherm and Egrav are the thermal and gravitational potential
energies, respectively, and V is the cloud volume.

To evaluate Etherm, we employ the general expression for a
nonrelativistic gas, (3/2)

R
P dV . Using equation (3) for P, this

integral becomes (3/2)M0a
2
T . Instead of evaluating Egrav directly,

we invoke the virial theorem, in the form

Egrav ¼ �2Etherm þ 3P0V : ð19Þ

After expressing the cloud volume in terms of the radius, the
enthalpy is

H ¼ � 3

2
M0a

2
T þ 16�

3
P0R

3
0 : ð20Þ

If we define a nondimensional enthalpy h through

h� H

G3=4M
3=2
0 P

1=4
0

; ð21Þ

then equation (20) becomes

h¼� 3

2
� 2þ 16�

3
k3
0 : ð22Þ

Figure 2 shows h along our sequence of clouds. Again, we
restrict ourselves to gravity-dominated configurations for which
� > �min. We also recall that � increases monotonically along
the sequence. Plotted here against �, the enthalpy dips to a min-
imum, then spirals inward toward a point. The latter corresponds
to the singular isothermal sphere. For this special configuration,
it can be shown that � 2 ¼ (�/2)1

=4 and k0 ¼ (1/8�)1
=4. Thus, the

limiting value of h is �0.187.
However, this limiting value is never reached in the course of

evolution. As long as the cloud releases energy into space, so that
L > 0, equation (17) tells us that the enthalpy declines. Thus, the
last accessible configuration coincides with the minimum en-
thalpy point in Figure 2. Numerically, we find that h ¼ �0:50 for
this cloud. The corresponding density contrast � is 370.

Consider now two configurations with identical values of h,
very slightly above the minimum. These clouds, like all those in
the sequence, have the samemass.We can view them as extremal
states attained by the minimum enthalpy cloud in the course of a
normal mode of oscillation. Here we are assuming that the cloud
radiates negligible energy during an oscillation period, so that
h remains constant. The two end states are in precise force bal-
ance; intermediate states depart only slightly from this condition.
In the small-amplitude limit, the oscillation has zero frequency,

and the unperturbed, minimum enthalpy state represents a sta-
bility transition.
In summary, an isothermal cloud becomes dynamically un-

stable at a density contrast � of 370, provided that the global
enthalpy is held fixed during any oscillatory perturbation. This
important fact was first discovered by Chavanis (2003) in the
course of a general analysis of isothermal configurations.3 Note
again the marked contrast with the traditional Bonnor-Ebert re-
sult. Themuch lower critical density contrast in that case (� ¼ 14:1)
arises because the cloud releases, and draws in, as much energy
as necessary to remain isothermal, even during a single oscilla-
tion period. This assumption would be inconsistent with our pic-
ture that the cloud is quasi-statically contracting due to relatively
slow, turbulent dissipation.
The minimum enthalpy state thus marks the natural endpoint

of the cloud’s evolution. We denote as �max the corresponding
density contrast and display this limit as the upper dashed hori-
zontal line in Figure 1. Clouds with higher values of the density
contrast, including the singular isothermal sphere, are inaccessible.

3.3. Turbulent Dissipation

Although we have drawn a number of conclusions regarding
the changing structure of ourmodel cloud, we have yet to discuss
its temporal evolution. The quasi-static contraction envisioned
here is facilitated by the release of energy. This emission must
arise at the shock interface between colliding turbulent eddies.
Typical fluid speeds are the virial value; i.e., less than 10 km s�1

for the clouds of interest. Hence, the shocks radiate through far-
infrared and submillimeter photons from low-lying transitions of
molecules. The cloud is optically thin to such photons. The lumi-
nosity L in equation (17) is thus generated from the full interior.
Consider, then, a representative volume of the cloud. The nu-

merical simulations mentioned previously have modeled the

Fig. 2.—Run of specific enthalpy h along the cloud sequence. This quantity
is plotted as a function of the effective sound speed �. The dotted portion of the
curve pertains to clouds that have too low a density contrast to be self-gravitating.

3 Chavanis (2003) finds a slightly higher critical �-value of 390. His mini-
mum enthalpy value, in our units, is h ¼ �0:493.
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dynamics of a magnetized gas subject to an impressed, turbulent
velocity field. Even if the fluid disturbances begin as incompres-
sible Alfvén waves, efficient mode conversion produces com-
pressibleMHDwaves that steepen and produce shocks (see, e.g.,
Goldstein 1978). Significant energy is dissipated during the char-
acteristic crossing time of the largest eddies. For example,
Mac Low (1999) found that

	̇ ¼ �
 V
3
turb

k
: ð23Þ

Here 	̇ is the energy loss rate per unit mass of gas, Vturb is the
average (rms) eddy speed, and k is the dominant wavelength of
the impressed turbulence. The empirical constant 
 was mea-
sured by Mac Low to be about 0.4.

In the simulations, turbulence is impressed on an arbitrary
scale. Indeed, the question of what drives the turbulence remains
controversial (Mac Low 2004). Here we recall the key fact that
the mean interior velocities match the virial value over a large
range of cloud sizes and masses (Larson 1981). It is likely, there-
fore, that self-gravity constitutes the basic driving mechanism,
although a quantitative model is still lacking. If this basic idea is
correct, then the ‘‘dominant wavelength’’ in equation (23) should
be comparable to the cloud size. We therefore adopt, as our ex-
pression for the cloud luminosity L, a mass-integrated version of
this relation:

L ¼ 

M0a

3
T

4R0

; ð24Þ

where the prefactor 
 does not necessarily have the value found
by Mac Low. The factor of 4 in the denominator reflects the fact
that the largest mode corresponds to overall expansion or con-
traction of the cloud (Matzner 2002).

3.4. Quasi-static Contraction

To follow the cloud evolution in time, we use our prescribed
luminosity to alter the global enthalpy. Combining equations (17),
(20), and (24), we recast the result into nondimensional terms:

�
 �
3

k0
¼ �6

d� 2

d�
þ 64�k2

0

dk0
d�

: ð25Þ

The dependent variables � and k0 are already known implic-
itly in terms of �0. (Recall eqs. [13]Y[15].) We can thus regard
equation (25) as giving the dependence of � on this same quan-
tity. Since 
 is still unknown, we use instead the combination 
� :

d(
�)

d�0
¼ 6k0

� 3

d� 2

d�0
� 64�k3

0

� 3

dk0

d�0
: ð26Þ

We integrate this equation numerically, setting 
� ¼ 0 at �0 ¼
6:5, the value at the Bonnor-Ebert density contrast, and ending
at �0 ¼ 25, the minimum enthalpy state. Over this evolutionary
span, 
� increases by 0.96.

Figure 3 shows that neither the effective sound speed nor the
cloud radius varies greatly during this period. The former increases
monotonically, with a fractional change of 10% by the end. The
radius gently decreases most of the time. Just before the unstable
state is reached, the cloud surface begins to swell, in agreement
with Figure 1.

The temporal change of the central density is much more
dramatic. As seen in Figure 4, �c increases slowly at first, and
then accelerates strongly at the end. Given the behavior of the
cloud radius, this rapid compression evidently involves a small
fraction of the total cloud volume. The left panel of Figure 5
displays the evolution of the full density profile. From bottom to
top, the associated values of 
� are 0, 0.60, 0.92, and the final
value, 
� ¼ 0:96.

Because the inner portion of the cloud undergoes such rapid
compression, one may question the basic assumption of quasi-
static behavior. Are all mass shells really moving at subsonic

Fig. 3.—Evolution of the cloud radius (solid curve) and the effective sound
speed (dashed curve). Note that the time coordinate 
� starts at the first self-
gravitating configuration; i.e., that for which � ¼ �min.

Fig. 4.—Evolution of the nondimensional central density. As in Fig. 3, the
time 
� is measured from the first self-gravitating cloud.
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velocity? At the very center, the velocity must fall to zero at each
time. But what of shells just outside the center?

Figure 6 shows the velocity profiles for the final three times
depicted in the left panel of Figure 5. Since the temporal variable
in equation (26) is 
� , we plot the ratio v/
�. For 
� ¼ 0:60 and
0.92, the velocity is subsonic throughout, even if 
were unity. In
fact, plausible 
-values are less than unity, as indicated earlier;
we will see in x 4 below that 
 � 0:3 best matches the ONC data.
In the final profile, corresponding to theminimum enthalpy state,
the peak velocities occur in the deep interior and are mildly
supersonic (v k �).

4. MODELING THE ONC

4.1. Prescription for Star Formation

At present, we have scant knowledge of how the birthrate of
stars scales with the properties of the cloud medium spawning
these objects. Within the solar neighborhood, Schmidt (1959)
found the star formation rate to be proportional to the square of
the local density; here, the rate ismeasure per unit volume. Schmidt’s
law thus states that the formation rate per gas mass scales linearly
with the cloud density.4

On the scale of galactic disks, it is established that the forma-
tion rate per unit disk area rises as�n, where� is the total gas sur-
face density and the exponent n is about 1.4 (Kennicutt 1998).
However, it is not straightforward to relate this important finding
to the present study. Each areal patch in the galactic observations
comprises numerous molecular complexes, any one of which is
far larger than the clumps of direct interest here.

Returning to our model, if the clump indeed undergoes slow
contraction, then its overall star formation rate must increase
with time. It is plausible that the local rate within each mass shell
rises with that shell’s density �. Following Schmidt, we posit a
power-law dependence:

ṁ� ¼
	

t1

�

�1

� �n

: ð27Þ

Here ṁ� is the mass in stars forming per unit time, per unit cloud
mass. The fiducial density and time, �1 and t1, are those from
equations (11) and (12), respectively:

�1 �
P

3=4
0

G3=4M
1=2
0

; ð28aÞ

t1 �
M

1=4
0

G1=8P
3=8
0

: ð28bÞ

Finally, the exponent n is to be set by matching to observations.
We stress that the prescription in equation (27) applies to low-
mass stars. The formation of massive objects is a separate phe-
nomenon. In our model, this occurs only in the high-density,
central region of the final, minimum enthalpy state.
Equation (27) contains a nondimensional efficiency factor 	.

Since only a fraction of the cloud mass turns into stars, we expect
	 to be well under unity. If, for simplicity, we assume this param-
eter to be the same in all mass shells, then integration of equa-
tion (27) yields the total mass per unit time in new stars:

Ṁ� ¼
4�	

t1�
n
1

Z R0

0

�nþ1r 2 dr: ð29Þ

We can conveniently recast this formula in terms of the effective
sound speed:

Ṁ� ¼ 	
a3
T

G
I : ð30Þ

Here the nondimensional quantity I is expressed using the tra-
ditional polytropic variables:

I � �1�2nffiffiffiffiffiffi
4�

p e (n�1=2) 0

Z �0

0

e�(nþ1) � 2 d�: ð31Þ

Fig. 5.—Left : Evolution of the density as a function of radius. From bottom
to top, the corresponding values of 
� are 0, 0.60, 0.92, and 0.96. The latter
value corresponds to the minimum enthalpy state. Right : Density profile of the
minimum enthalpy state (solid curve) compared to the reconstructed stellar
number density in the ONC (dot-dashed curve).

Fig. 6.—Evolution of the velocity profile. In order of deepening minima, the
curves correspond to 
�-values of 0.60, 0.92, and 0.96. Note that the velocity is
normalized to 
�.

4 In Schmidt’s original formulation (Schmidt 1959), the gas in question was
H i. We now know, of course, that the relevant clouds are molecular.
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Our prescription gives a finite star formation rate for clouds of
arbitrarily low density. This is clearly an oversimplification. There
is no evidence, for example, that H i clouds form stars at all. Even
within the molecular domain, it may be that stars form only above
some threshold density. In their study of the Rosette cloud com-
plex, Williams et al. (1995) found that only clumps that are
strongly self-gravitating (as assessed by comparison of velocity
dispersions, masses, and sizes) have internal stars. While a more
complete model should account for this threshold effect, we do
not include it explicitly, but simply limit our discussion to self-
gravitating clumps (� > �min) that are capable of forming stars.

4.2. Comparison with Observations

In Paper I, we empirically determined the star formation his-
tory of the ONC. The database of Hillenbrand (1997), together
with theoretical preYmain-sequence tracks (Palla&Stahler 1999),
allowed us to assignmasses and contraction ages.5 In the detailed
analysis, we restricted our attention to the 244 members with
M� > 0:4M�; the Trapezium stars themselves haveM� � 7M�
and are thus already on the main sequence. This sample is sta-
tistically complete, in the sense that the oldest stars do not fall
below the observational sensitivity limit.

On the basis of our results from Paper I, Figure 7 shows Ṁ�(t),
the mass production per unit time, as a function of stellar age.
Here we have binned the data in age intervals of 106 yr. We have
also extrapolated from our subsample to all stellar masses. We
did so by multiplying the accumulated mass at each epoch by a
factor of 1.3. This factor accounts for the missing stars with
M� < 0:4M�, according to the field star initial mass function of
Scalo (1998).

In order to use equation (30) to describe the ONC, we need to
know the effective sound speed aT as a function of time. Our
numerical model gives the nondimensional functional relation
�(
�) (recall Fig. 3). Similarly, the quantity I contains 0 and �0,
which we also know as functions of 
� . Converting these rela-
tions to dimensional form requires that we set the cloud massM0

and background pressure P0.
We now make the critical assumption that the parent cloud of

the ONCwas, just prior to its dispersal, in the minimum enthalpy
state. Then equations (9) and (10) can be combined to yield

M0 ¼ f1
R0a

2
T

G
; ð32Þ

P0 ¼ f2
GM 2

0

R4
0

; ð33Þ

where R0 and aT refer to the final cloud state. The results of our
numerical integration give f1 ¼ 2:0 and f 2 ¼ 0:028. We take R0

to equal the radius of the stellar cluster (2.5 pc; see Hillenbrand
1997) and identify aT with the observed stellar velocity disper-
sion (2.4 km s�1; see Jones & Walker 1988). We then find that
M0 ¼ 6900 M� and P0 ¼ 1:1 ; 10�10 dyne cm�2. The latter is
about 300 times the canonical value in the diffuse interstellar me-
dium; i.e., that bounding H i clouds (Wolfire et al. 1995).

It remains only to adjust 	, 
, and the exponent n, until the
theoretical star formation rate Ṁ�, as given by equation (30),
matches the empirical one. We use a standard implementation of
the Levenberg-Marquardt fitting algorithm (see x 15.5 of Press

et al. 1988). The likelihood function that we maximize incor-
porates a uniform error in the star formation rate at each epoch of
� ¼ 3 M� Myr�1. Here we have used � �

ffiffiffiffi
N

p
hMi, where N is

the median number of stars produced per 106 yr, and hMi is the
average stellar mass at the appropriate epoch. This formula as-
sumes that the number of stars in each bin is Poisson-distributed
about the mean predicted by the model; i.e., we neglect the ob-
servational contribution to the error.

The dotted curve in Figure 7 shows our theoretical rate as a
function of stellar age, and the optimal values for the three pa-
rameters are shown as well. As predicted, 	 is small (2 ; 10�4),
signifying a low efficiency for stellar production. Specifically,
the cloud converts 8% of its mass (550M�) into low-mass stars.6

The parameter 
 is also small (0.3), indicating that the cloud con-
tracts over an interval that is long compared with the free-fall
time, tff. The latter is 1.6 Myr for our initial cloud state. Finally,
the best-fit value of n (1.4) lies close to unity. Thus, the original
star formation law of Schmidt may hold quite generally. The 1 �
errors in 	, 
, and n, are, respectively, 1 ; 10�4, 0.08, and 0.09.
These figures would have been larger had we included obser-
vational sources of error.

We note also that the basic physical characteristics of our
model clouds are consistent with the clump properties inferred
from observations. Our fiducial density �0 is equivalent to a mo-
lecular hydrogen number density of 520 cm�3. As can be seen in
Figure 5, the average interior density is higher by an order of
magnitude. The mean visual extinction of a cloud, usingM0 /�R

2
0

as the typical column density, is 11 mag. These figures are in
general accord with the findings of Williams et al. (1995) for self-
gravitating clumps in the Rosette complex. Moreover, Av , mea-
sured inward from the edge, quickly exceeds unity in all our

5 Recently, Jeffries (2007) has redetermined the ONC distance as 390 pc,
rather than the value of 470 pc used by Hillenbrand (1997). If correct, this dis-
tance shift will systematically lower stellar luminosities and therefore increase
their ages.

Fig. 7.—Total star formation rate in the ONC as a function of time. The latter
is actually shown as the stellar age. The solid histogram uses the empirical ages
from Paper I, binned in 1 Myr intervals. The dotted curve shows the theoretical
prediction. Also shown are the best-fit values for the model’s three free pa-
rameters: 
, 	, and n.

6 This figure is higher if many of the embedded, near-infrared sources seen be-
hind the ONC are members of the original cluster (Ali & Depoy 1995; Hillenbrand
& Carpenter 2000).
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models. Thus, the hydrogen is indeed inmolecular form through-
out the bulk of the interior, as is appropriate for a star-forming cloud.

5. DISCUSSION

In this paper we have adopted a conceptually simple model of
cloud contraction and stellar group formation. The cloud is a
self-gravitating sphere that is supported against collapse by the
motion of turbulent eddies. We assigned an effective pressure to
this motion; our formulation implicitly assumes the eddy speed
to be spatially constant, although varying in time. Cloud evolu-
tion is mediated by the slow leakage of energy, presumed to oc-
cur through internal shock dissipation.

This model, supplemented by a Schmidt-type prescription for
the star formation, can account not only for the empirically known
history of the ONC, but also for more general characteristics of
stellar birth. Consider, for example, the issue of formation effi-
ciency. In the spirit of Krumholz &McKee (2005), we can define
a nondimensional star formation rate per free-fall time:

	A �
tA

tev

�M�

M0

: ð34Þ

Here tev is the time over which the cloud produces stars, while
�M� is the total mass in these objects. Using our ONC model,
and setting tev ¼ 1 ; 107 yr, we find that 	A ¼ 0:014. Zuckerman
& Evans (1974) long ago pointed out that only about 1% of the
Galaxy’s molecular gas can become stars in a cloud free-fall time,
to reproduce the observed, global star formation rate. The agree-
ment here suggests that giant complexes create stars principally
through their slowly contracting internal clumps, as we have
modeled.

We have not described the physics underlying the turbulent
dissipation in any quantitative way. Our best-fit value of 
 for the
ONC is similar to that found in numerical simulations of tur-
bulent clouds (Mac Low 1999). However, our physical picture is
quite different. All simulations to date, which focus on an iso-
lated, interior volume, find the turbulent energy dying away. In
our model, the mean turbulent speed increases with time (see
Fig. 3). Future global simulations of self-gravitating clouds sup-
ported by turbulent pressure should show this effect.

Our best-fit value of n agrees, perhaps fortuitously, with that
originally proposed by Schmidt (1959). For an n-value of unity,
the star formation rate per cloud mass scales with the gas density.
Did this proportionality really hold in the ONC? The right panel
of Figure 5 suggests that it did, at least roughly. Here the solid
curve is the density profile of our final minimum enthalpy cloud
model. The dot-dashed curve is the current number density of
ONC stars, as reconstructed from the observed projected number
density (see Fig. 3 of Paper I). The similarity of the two curves
indeed suggests that stars trace themass distribution of the parent
cloud. The same point is evident when comparing the projected
stellar density with CO contours of the remnant gas (see Fig. 12.27
of Stahler & Palla 2004).

Of course, all stars travel some distance from their birth sites.
They do not move ballistically, but are subject to the gravita-
tional potential of the parent cloud. Because of the star formation
law expressed in equation (27), stellar births are indeed concen-
trated toward the cloud center, but there will inevitably be some
outward diffusion. In a future paper, we hope to track this process
through a direct numerical simulation.
The minimum enthalpy cloud that terminates our dynamical

sequence is dynamically unstable. How do we interpret this in-
stability in a more realistic setting? The essential fact is that the
self-gravity of the gas becomes so strong that it leads to rapid in-
ternal contraction, perhaps even true collapse of the central region.
It is tempting to link this event with the formation of high-mass
stars.While the physics ofmassive star formation is far from clear,
the collapse or coalescence of dense gaseous structures appears
to play a key role (Stahler et al. 2000;McKee&Tan 2003). In the
specific case of the ONC, the Trapezium stars are, of course, cen-
trally located, and they appear to be of relatively recent origin
(Palla & Stahler 2001).
In comparing our model with data from the ONC, we have

accepted at face value the stellar ages inferred from the place-
ment of each object in the HR diagram. The age spread within
clusters remains a contentious issue. For the ONC, Palla et al.
(2005) have found that four nominally older stars are depleted in
lithium, as would be expected. Such findings are inconsistent
with the assertion by Hartmann (2001) that the ostensible age
spread primarily reflects observational uncertainties.
Pflamm-Altenburg & Kroupa (2007) accept the higher ages,

but they hypothesize that all such stars were gravitationally cap-
tured from somewhat older, neighboring clusters. As the authors
themselves note, the existence of such neighboring systems is
unclear. The other subassociations within the Orion complex are
too young. One possibility is that there were a large number of
nearby small groups producing low-mass stars and then dispers-
ing. Pendingmore direct evidence for such groups, we continue to
believe that the nominal age spreads in both the ONC and other
systems are real.
In the present model, we have taken the cloud to be of fixed

mass. This assumption may be acceptable for the ONC pro-
genitor cloud, at least until the point when the Trapezium stars
ionized and drove off the gas. In clouds producing low-mass T
associations, the latter process does not occur. Yet these clouds
are still dispersed, presumably through stellar winds. In our next
paper, we will generalize our model of cloud contraction to in-
clude the effect of continuous mass loss. We will thus achieve a
fuller picture of stellar group formation, a process of importance
not only locally, but also on galactic scales.

We are grateful to Steve Shore for pointing out the work of
P. Chavanis on the thermodynamics of self-gravitating spheres.
This project was supported by NSF grant AST 06-39743.
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