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ABSTRACT

The digital revolution is transforming astronomy from a data-starved to a

data-submerged science. Instruments such as the Atacama Large Millimeter

Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square

Kilometer Array (SKA) will measure their accumulated data in petabytes. The

capacity to produce enormous volumes of data must be matched with the com-

puting power to process that data and produce meaningful results. In addition

to handling huge data rates, we need adaptive calibration and beamforming to

handle atmospheric fluctuations and radio frequency interference, and to provide

a user environment which makes the full power of large telescope arrays accessible

to both expert and non-expert users. Delayed calibration and analysis limit the

science which can be done. To make the best use of both telescope and human

resources we must reduce the burden of data reduction.

We propose to build a heterogeneous computing platform for real-time pro-

cessing of radio telescope array data. Our instrumentation comprises of a flexible

correlator, beam former and imager that is based on state-of-the-art digital signal

processing closely coupled with a computing cluster. This instrumentation will

be highly accessible to scientists, engineers, and students for research and devel-

opment of real-time processing algorithms, and will tap into the pool of talented

and innovative students and visiting scientists from engineering, computing, and

astronomy backgrounds. The instrument can be deployed on several telescopes

to get feedback from dealing with real sky data on working telescopes.

Adaptive real-time imaging will transform radio astronomy by providing real-

time feedback to observers. Calibration of the data is made in close to real

time using a model of the sky brightness distribution. The derived calibration

parameters are fed back into the imagers and beam formers. The regions imaged

are used to update and improve the a-priori model, which becomes the final

calibrated image by the time the observations are complete.
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1. INTRODUCTION

The scientific goals of the next generation of radio telescopes will be enabled by trans-

forming our approach to signal processing by exploiting the digital revolution. Real-time

signal processing for telescope arrays must address data rates that will exceed ∼1 terabyte/s

and require petaop/s signal processing. The huge volumes of data must be matched with

the computing power to process that data and produce meaningful results. Innovative ap-

proaches in signal processing, computing hardware, algorithms, and data handling are nec-

essary. In addition to handling the data rates, adaptive calibration and beamforming are

essential to handle atmospheric perturbations (adaptive optics), and radio frequency interfer-

ence (RFI), and to provide a user environment which makes the full power of large telescope

arrays accessible to both expert and non-expert users.

The current data processing paradigm uses on-line custom digital signal processing

(DSP) with off-line data reduction and analysis in general purpose computers. Off-line

processing can handle only a few percent of the data generated by the on-line DSP. The

large time between data acquisition and analysis, results in lost science opportunities.

In this paper we propose to address these problems by integrating on-line and off-line

data processing in a heterogeneous system using ASIC, FPGA, GPU and computer clusters

to provide a flexible programming environment with real-time feedback. Adaptive real-

time imaging enables us to image large regions with high frequency and time resolution.

Variable sources, instrumental problems and RFI are handled in real time. We propose

to build a development computing platform with a flexible correlator, beam former and

imager for radio telescope and receiver arrays that is based on state-of-the-art, digital signal

processing closely coupled with a computing cluster. This instrumentation will be accessible

to scientists, engineers, and students for research and development of real-time processing

algorithms, and taps into the pool of talented and innovative students and visiting scientists

from engineering, computing, and astronomy backgrounds. Adaptive real-time imaging is

a major step in transforming synthesis imaging from an off-line to a real-time process — a

digital camera for radio telescopes. This transformation enables new science, and is necessary

to prevent astronomers from being overwhelmed by data and off-line data reduction. In

addition to signal processing and scientific advances, new approaches are needed to enable

power-efficient instrumentation that is affordable on a massive scale. Adaptive real-time

imaging will revolutionize the science capabilities of existing and developing telescopes like

the Atacama Large Millimeter Array (ALMA), the Murchison Wide-Field Array (MWA),

and have a broad impact on the way that radio telescope arrays can be used. Adaptive

real-time imaging will transform synthesis telescopes by providing real-time feedback to

observers. Obtaining calibrated data and images quickly will enable astronomers to optimize
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the observations and calibrations needed to realize their science.

Section 2 reviews the current state of the art and the problems faced by existing and

next generation aperture synthesis telescopes. Section 3 presents a model for developing

adaptive real-time imaging. In Section 4, 5 and 6 we trace the data processing from the tele-

scopes through cross correlation, calibration and imaging. Section 7 presents some current

developments and conclusion.

2. APERTURE SYNTHESIS IMAGING

Arrays of radio telescopes enable us to map the sky brightness using aperture synthesis

techniques (Thompson, Moran, & Swenson, 2001 [TMS2001]). If the dimensions of the

radio source and the telescope array are small compared with the distance to the source,

then the coherence of the wavefront is proportional to the Fourier transform of the intensity

distribution of the source (Van Cittert-Zernike theorem, Born & Wolf, 1959). The coherence,

also known as the visibility function, is obtained from measurements of the cross correlation of

signals between pairs of antennas in the telescope array. A telescope array with N antennas,

provides N(N−1)/2 cross correlations and N auto correlations for each polarization product.

The Earth’s rotation of the projected geometry of the telescope array in the direction of a

celestial source provides additional samples of the source visibility function in the aperture

plane (Ryle, 1962; TMS2001).

Digital cross correlators compute cross-power frequency spectra for all pairs of antennas

in the telescope array. Since the signals from celestial radio sources are typically much

weaker than the uncorrelated noise power from sky and radio receivers, the measured cross

correlations are time-averaged to enhance the signal-to-noise ratio.

The Expanded VLA (EVLA) with 27 antennas (Perley et al. 2011), and the Atacama

Large Millimeter Array (ALMA) with 64 antennas (Wootten & Thompson, 2009) repre-

sent the current state of the art aperture synthesis telescopes at centimeter and millime-

ter/submillimeter wavelengths respectively.

The digital correlators are peta-op, special-purpose computers. The EVLA correlator

(Carlson & Dewdney, 2000) cross correlates all pairs of antennas with up to 16 GHz of

bandwidth with a minimum of 16,384 spectral channels in 64 full polarization, independent

spectral windows. The ALMA correlator (Escoffier et al., 2007) processes 16 GHz of band-

width for the 2016 pairs of antennas and 4 polarization products. The basic operation is a

complex-multiply and add operation. The complex multiply is typically 4×4-bit with accu-

mulation into 32-bits at rates ∼ 1017s−1. Large digital correlators built using custom ASICS
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take 5-10 years to develop (e.g., ALMA: Escoffier et al. 2007; EVLA: Perley et al. 2011).

Time-averaged correlation data are written to a data archive for off-line data processing.

The data rate from the EVLA correlator can be up to 350 GB s−1. Only a few percent of

this data rate can be handled by the off-line data processing. The current plan for ALMA

is an average data rate ∼ 6 MB s−1 and a peak rate 60 MB s−1 (Lucas et al. 2004). Even

so, users will be faced with the prospect of dealing with several terabytes of data for EVLA

and ALMA observations (EVLA: Perley, 2004; ALMA: Lucas et al. 2004).

Calibration and imaging are made in general purpose floating point processors using

the averaged cross correlations from the data archive. The complex-valued cross correlations

are samples of the Fourier transform of the sky brightness distribution. These are calibrated

w.r.t. measurements of known sources. When sufficient cross-correlations have been mea-

sured, images of the sky brightness distribution can be made from the Fourier transform

of the calibrated cross correlations. The Images, I(s, f, p, t), are, in general, functions of

position, s, frequency, f , polarization, p (Stokes I, Q, U, V), and time, t.

Sophisticated image processing algorithms have been developed to self-calibrate the

measured cross-correlation function using images of the sky brightness, and to remove side-

lobes of the synthesized beam and confusing sources (e.g., TMS2001; Cornwell and Perley,

1992). These algorithms have been very successful, but are time consuming and require a

level of expertize which many astronomers do not wish to acquire in order to do their sci-

ence. The delayed calibration and analysis of the data limit the science which can be done.

Variable sources, targets of opportunity, instrumental and atmospheric problems, and radio

frequency interference (RFI) at low frequency, are more easily handled as the data are being

acquired.

Aperture synthesis arrays at meter wavelengths present formidable problems. The wide

field of view of the telescopes are full of radio sources which confuse the regions of interest.

The antennas have direction-dependent response over the field of view, and the ionosphere

can cause direction-dependent phase shifts on short time scales. LOFAR is a Low Frequency

Array telescope with antennas at 77 stations spread over 100 km and observing in the fre-

quency range 30-90 and 120-250 MHz. Data from the antennas at each station are combined

into phased array beams to reduce the data rate to a single data stream for each station.

Correlation of the station beams is made in a 34 TFlop, IBM BlueGene/L. LOFAR cali-

bration and imaging are made in pipelined data processing performing RFI flagging, with

calibration using a model sky brightness model (Nijboer & Noordam, 2006). The Murchison

Wide-Field Array (MWA) was designed as a 512-antenna array being built in Western Aus-

tralia to observe in the frequency range 80-300 MHz. The correlation data would comprise

of 130,000 cross correlations with 768 frequency channels and 4 polarization products (Ord
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et al. 2009). The data rate ∼19 GB s−1 is impractical to store; data will be calibrated and

imaged in a real-time pipeline with images of the sky produced at 8 s intervals. The real-time

calibration pipeline processing is discussed in detail by Mitchell et al. (2008). The MWA

was recently de-scoped to a 128-antenna array, which reduces the data rate by a factor 16.

The Square Kilometer Array (SKA) will be able to form simultaneous images in multiple

regions within the field of view. The SKA science requirements (Schilizzi et al. 2007)

require imaging multiple regions with an image fidelity ∼ 104 between 0.5 and 25 GHz. The

bandwidth ∼25% at observing frequencies below 16 GHz, and 4 GHz above 16 GHz. Each

band will have ∼ 105 spectral channels with a minimum accumulation interval 0.5 s. The

images should have at least 105 beam areas at the maximum angular resolution. Three Key

Science projects require all-sky surveys. Survey science requires images with superb image

quality, which imposes stringent requirements on the calibration and sidelobe levels at every

stage of beam formation. A major theme driving the SKA design is the high cost of data

processing (Perley et al. 2003; Cornwell 2004, 2005; Lonsdale et al. 2004; Wright et al.

2006).

3. DATA PROCESSING MODEL

In this paper we propose to develop calibration and imaging in close to real time in

order to reduce the burden of expert data reduction on the end user, and to make best use of

both telescope and human resources. Large arrays and new science require seamlessly inte-

grating calibration and imaging into the data acquisition process. Calibration, imaging, and

deconvolving the response of sources outside the fields of interest are intimately related, and

are best handled in close to real time, rather than using off-line data processing. Calibration

in close to real time uses a model of the sky brightness distribution. The derived calibration

parameters are fed back into the imagers and beam formers. The regions imaged update

and improve the a-priori model, which becomes the final calibrated image by the time the

observations are complete (Figure 1).

High performance digital signal processing enables us to handle high data rates in paral-

lel, and to make images in close to real time. Images can be made simultaneously for multiple

regions within the field of view by integrating the output from the correlators on multiple

targets of interest, calibration sources, and sources whose sidelobes confuse the regions of

interest.

The system design uses modular DSP boards with a 10 GbE interconnect architecture

which allows reconfiguration of the computing resources for multiple applications. The pro-
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gramming model uses a system generation library with hardware abstractions which allow

the application programmer to focus on the application rather than the details of the hard-

ware. The system design and programming model together allow the application software

to survive by using a technology independent design flow. A major problem in the de-

sign of large antenna array processors has been the routing of high-bandwidth data. Each

cross-correlation processor and beam former must receive data from every antenna, and

the number of interconnections can become unmanageable. The CASPER1 group has devel-

oped a packetized signal flow architecture capable of performing this antenna/frequency data

transposition using commercial 10 Gbit Ethernet (10 GbE) switches (Parsons et al. 2008).

The FPGA devices are programmed using open-source signal processing libraries developed

and supported at multiple observatories that allow flexible, scalable, and device-independent

solutions (Brodersen et al. 2004; Parsons et al. 2008). This ongoing work reduces the time

and cost of implementing interferometer processors while supporting upgrades to new gen-

erations of processing technology.

A hybrid solution using beam formation and correlators provides a flexible development

path for imaging large fields of view. Phased array beams can be formed anywhere in the

sky by adding the signals from the antennas. The sidelobe structure of each beam depends

on the array geometry, the source direction, and the amplitude and phase weighting of the

signals from each antenna. Beam formation is appropriate for analyzing signals from discrete

radio sources such as pulsars, SETI targets and RFI sources. Beam formation allows us to

channel the collecting area of large arrays of telescopes into expensive back-end analysis

engines. Direct imaging using beam formation is appropriate for compact sources, but is

currently too expensive for imaging large fields. Correlators provide a versatile mechanism

for imaging multiple regions within a field of view.

4. DATA FLOW

In this section we trace the data flow through an imaging system using correlators and

beam formers. Figure 1 shows the overall system. The total bandwidth of signals from

N antennas is N × B × Npol, where B is the analog bandwidth and Npol the number of

polarizations from each antenna. The data for each antenna are digitized with 2-12 bit

precision. The total data bandwidth is N × 2B × Npol × Nbits, e.g., for N = 1000, B = 1

GHz, Npol = 2, and Nbits = 8, the total data bandwidth is 4 1012 bytes s−1.

The bandwidth must be channelized, to provide spectral resolution, to facilitate in-

1Collaboration for Astronomical Signal Processing and Engineering Research; http://casper.berkeley.edu

http://casper.berkeley.edu
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terference rejection, and to reduce bandwidth smearing by using multi-frequency synthesis

(MFS). The science and RFI requirements for a large number of frequency channels favor an

‘FX’ architecture (Figure 1). Voltage signals from each antenna and polarization are divided

into many frequency channels (‘F’ stage). Excellent separation of frequency channels can be

obtained with polyphase filters. Fixed point processors are well matched to the ‘F’ stage,

with ∼ log(Nchan) complex-multiply-add operations and a high data bandwidth. After the

frequency transform, the data can be processed in parallel, reducing the data rate in each

frequency channel by a factor Nchan.

These data are routed into cross correlators for each pair of antennas and frequency

channel to measure the correlation properties of the incident radiation (‘X’ stage), and into

beam formers to form phased array beams at multiple points in the sky. Commercial 10-

GbE switches provide flexible routing which allows the DSP to be upgraded, repaired, and

reprogrammed with minimum interruption to telescope operations.

Cross correlation is a complex-multiply and accumulate operation for all pairs of an-

tennas and polarizations. For a dual polarization array with N antennas and bandwidth,

B, the correlator must provide 2N(2N + 1)/2× B complex-multiply and accumulate oper-

ations per second, independent of the number of frequency channels. The complex-multiply

is typically 4×4-bit with accumulation into 32-bits. Using fewer bits in the cross correlation

results in a small loss in resulting signal-to-noise, but allows the use of lookup tables for the

cross correlations. Floating point processors can also be used. Performance, cost and power

comparisons of ASIC, FPGA, GPU, and CPU processors have been made by a number of

authors (Ord et al. 2009; Nieuwpoort & Romein 2009; Clark, LaPlant, & Greenhill 2011).

An order of magnitude estimate for the cost of a custom ASIC correlator which has been

considered by the CASPER group, is $2M + $10 per chip, versus $2000 for a high perfor-

mance GPU or FPGA, which suggest that an ASIC correlator would be a better solution for

systems with more than ∼ 1000 chips. The development times are: GPU (∼ 1 yr), FPGA (∼
2 yr), ASIC (∼ 5 yr). ASICs or FPGAs offer more bandwidth, GPUs offer more FLOPS, per

$. Development time favors GPUs. ASICs will be required for arrays with large numbers of

correlations in order to meet the power/heat requirements. A heterogeneous system would

allow choosing the appropriate solutions at each stage of the data flow. Clark et al. (2011)

have a useful discussion in section 2.3.

After correlation there are N(N + 1)/2 auto and crosscorrelations for each polariza-

tion product. The data are then time averaged. The data rate is reduced from the input

bandwidth, B to the rate of change of the cross correlations – the fringe rate. In order to

correlate the signals from a siderial source anywhere in the sky, the data bandwidth from

the correlator is:
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N(N + 1)/2×Npol ×Nchan ×Nbits × 2 sdot×Dmax/λ,

where Npol = 4 polarization products, and sdot is the earth rotation rate, 7.27 10−5

radian s−1. e.g., for N = 1000, Nchan = 105, Npol = 4, Dmax = 1000 km, λ = 1 cm, and

Nbits = 2× 16 (complex data), the total data bandwidth would be ∼ 1016 bytes s−1.

Sampling the correlator at the fringe rate allows us to make images over a wide field of

view, including targets of interest, calibration sources, and sources whose sidelobes confuse

the regions of interest. We can form simultaneous images in multiple regions within the

field of view by integrating the output from the correlators at multiple phase centers. The

data stream from each correlator is multiplied by phase factors, exp(2πi/λ r.so), where r =

(rj − rk) is the baseline vector for antenna pair (rj, rk), and so is the phase center in each

region of interest. The data bandwidth for imaging the primary beam width is:

N(N − 1)/2×Npol ×Nchan ×Nbits × 2 sdot×Dmax/Dant.

e.g., for N = 1000, Nchan = 105, Npol = 4, Dant = 12 m, and Nbits = 2 × 16 (complex

data), the total data bandwidth is 2 1010 bytes s−1 for 1 km baselines, and 2 1013 bytes s−1

for 1000 km baselines.

5. CALIBRATION

An a-priori model of the sky brightness distribution is used for calibration and imaging.

In the standard observing paradigm, strong compact sources are used as primary calibrators,

and self-calibration is used to improve the calibration during the off-line imaging process.

The calibrations are the product of antenna station beam patterns, gains, bandpass and

polarization corrections which are derived from a least squares fit of the data to a model

visibility which is computed for the calibration source or the sky brightness model. For

compact sources, a simple direct Fourier transform can be used. For more complex sky

brightness models, a gridded FFT can be used to derive the model visibility used in a least

squares fit to the measured cross correlations. The calibrations may vary with time and

position in the sky. For phased array station beams, atmospheric fluctuations make the

primary beam response time variable. Our approach to these problems is to separately

calibrate the data for each phase center. We can identify regions which have bright emission

from a-priori images of the sky brightness, and image only regions which are of interest or

contain sources whose sidelobes corrupt the regions of interest. Confusing sources may be in

the sidelobes of the primary beam, or in different isoplanatic regions. The sky model is used

in a self calibration algorithm to determine the antenna calibration as a function of time for

each phase center which contains suitable sources. The calibrations at each phase center are
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correlated, and can be improved by developing a global model across the array as a function

of time and frequency (Nijboer et al. 2006). If the source contains spectral lines, multiple

frequency channels are used simultaneously to determine the calibration. Observations in

multiple frequency bands can be used to separate the gains into tropospheric and ionospheric

delays. The data streams can be buffered so that the gains can be averaged and interpolated

before being applied to the data stream. Confusing sources are removed by subtracting the

source model from the calibrated data stream. The subtraction can be made for each region

of interest and frequency channel in distributed processors associated with each correlation

engine, but including the response from the whole sky model, especially of course the strong

sources (Wright 2005; Mitchell et al. 2008).

The basic calibration computation is a complex-multiply of the measured cross correla-

tions (uv data) for each data sample and frequency channel. The calibrations can be stored

in data structures and applied when the uv data are plotted, analyzed, or imaged. In Figure

2, we plot the computation time for calibrating multi-channel uv data versus the number of

uv data samples in an off-line simulation for ALMA data with 60 antennas in a 4 km con-

figuration. Figure 2 shows that the off-line calibration time is proportional to the number of

uv data samples. We used the MIRIAD data reduction package (Sault, Teuben & Wright,

1995), which uses a streaming data format. The complex-valued uv data were represented

by 4 bytes per frequency channel with a scaling factor for each multi-channel data sample.

The 4-byte representation of the Nchan allows a 1:32,000 spectral dynamic range for each

multi-channel data sample. Including the time-variable meta-data which describe the data,

the telescope, and the observations, the total length was 460 bytes for a 100-channel data

sample. The calibration rate was 6 Mbytes s−1, showing that the average data rate currently

allowed for ALMA could be calibrated in a single pipelined process on a standard rack server,

and that much higher data rates could be supported in multiple threads on a modest sized

cluster. Further gains in computing efficiency are clearly possible. Off-line data reduction

typically uses static “measurement sets” with the uv data represented as 8- or 16-byte com-

plex values. An astronomer using off-line data processsing typically keeps several copies of

calibrated and uncalibrated uv data, with each step requiring reading and writing the uv

data.

In a real-time imaging pipeline, the calibrations are derived from, and applied to the

data streams from the correlators (see Figure 1). RFI must be also subtracted from the

data stream before it is passed to the imaging engine and beam formers. RFI presents a

special case in several ways. RFI sources may be stationary, or moving across the sky at a

non-siderial rate. A correlator can be used to locate and characterize RFI as a function of

time, frequency and polarization. The signal-to-noise can be improved by pointing some of

the antennas or beam formers at the RFI sources. Correlators allocated to measuring RFI
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may need to sample the signal at high data rates. For phased array telescopes, the station

beam can form nulls at the position of (moving) RFI sources. Accurate calibration of the

array antennas is required in real time (Barott et al. 2011).

6. REAL TIME IMAGING

The standard imaging algorithm is an FFT of the gridded uv data for each field of view,

polarization and frequency channel. Here we review the basic math. For a more detailed

description, see e.g., Thompson, Moran, & Swenson, (2001), and references therein. The

brightness distribution is the Fourier transform of the sampled visibility data, V . Since we

only have discrete samples of V , we define a weighting function W , and make an image, I ′

which is the Fourier transform of the product of V and W . The weighting function W is

typically chosen to minimize the noise and make a more uniform weighting of the sampled uv

plane. W = 0 where V is not sampled. The image I ′, the Fourier transform of the product of

V and W , is the convolution of the Fourier transforms of V and W . The observed brightness

distribution is the sky brightness distribution, I(s, f, p, t), illuminated by the primary beam

pattern, A(s, ν, p). Omitting the functional dependence for clarity, I ′ = [I × A] ? B, where

B is the synthesized beam, the instrumental point-source response.

In order to use a fast Fourier transform algorithm, we re-sample the uv data onto a

gridded uv plane. The uv data are multiplied by the weighting function W , convolved by a

gridding function C, and re-sampled onto a regular grid by Π.

[(V ×W ) ? C]× Π <= FFT => [((I × A) ? B)× c] ?q

Thus, the Fourier transform of the gridded uv data is an image of the sky brightness distri-

bution I, multiplied by the primary beam pattern, A, convolved the synthesized beam B,

multiplied by c, and convolved by q. The convolution by q replicates the image at intervals

1/δuv, where δuv is the sample interval of the gridded uv data. Aliasing in the sky brightness

image is minimized by choosing a function C, so that its Fourier transform c falls to a small

value at the edge of the image.

The imaging step is usually followed by correction in the image plane for the gridding

convolution, c, and deconvolution to remove the response to source structure in the sidelobes

of the synthesized beam, B. Two different deconvolution algorithms are commonly used: an

iterative point source subtraction algorithm, CLEAN, which is well matched for deconvolving

compact source structures, and MAXIMUM ENTROPY, a gradient search algorithm, which

maximizes the fit to an a-priori image, in a least squares fit the the uv data. Both algorithms

operate in the image plane on the synthesized image and beam.
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In Figure 2, we plot the time for a gridded FFT in MIRIAD for a multi-channel image

with 1280 × 1280 pixels and 100 frequency channels. The multi-channel data are gridded and

imaged as a vector with a common pixel size, gridding convolution function, and synthesized

beam. Figure 2 shows that the imaging time is proportional to the number of uv data

samples, at a rate 3.4 Mbytes s−1 using a single processor. Image deconvolution time, scales

with image size and complexity, and is cpu intensive. A direct deconvolution, dividing

by the Fourier transform of the synthesized beam, can not be used because the Fourier

plane is not completely sampled. Both CLEAN and MAXIMUM ENTROPY are iterative

algorithms, using FFTs of the image and synthesized beam. A 1280 × 1280 × 100 channel,

real valued image (4-bytes per pixel) ∼650 Mbytes, with a common synthesized beam (6.5

Mbyes), can be deconvolved in memory. The frequency channels can be deconvolved in

parallel processes. Image deconvolution is relatively fast for compact image structures, but

can exceed the imaging time for complex images.

In a real-time imaging pipeline, images in multiple frequency channels can be processed

in parallel in a distributed architecture. The images are formed from the calibrated data

stream from which the a-priori sky model has been subtracted, and are therefore difference

images from the sky model. Subtracting the sky brightness model from the uv data minimizes

many of the problems in the gridded FFT, and in particular allows position dependent

calibrations and time variable primary beam patterns to be handled (see, e.g., Wright &

Corder 2008). The difference images are used to update the sky model, including not only

the regions of interest, but also improving the accuracy of sources whose sidelobes must

be subtracted. As the observations proceed, both the model image and the calibration are

improved. The process converges when the difference images approach the noise level and

the model image is consistent with the data. For a small field of view a 2D FFT can be used

to image the region around each phase center. The maximum image size for a 2D FFT scales

as Dmax/λ, ∼ 108 beam areas on a 1000 km baseline at λ 1 cm. Deconvolution is minimized

by obtaining good uv sampling of the aperture plane, and low synthesized beam sidelobe

levels for large N array designs. e.g., for the ALMA array with 60 antennas, the sidelobe

levels are ∼ 1 %. In many cases, deconvolution in the image plane may not be needed, since

the model image and sidelobes of confusing sources have been subtracted from the uv data.

In addition, images may be limited by atmospheric and instrumental errors which must be

removed from the uv data and can not be removed by deconvolving in the image plane.

The imaging engine can make images using all the frequency channels. Spectral line

images can be made for multiple frequency channels, averaged into the desired frequency or

velocity intervals. Wideband, MFS imaging treats the frequency channels as independent

uv samples. The a-priori model used in the calibration can be updated at intervals, when

the difference from the best current image is significant.
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Variable sources are detected as intermittent sources which are inconsistent with the

current model. We should also accumulate a χ2 image to help identify pixels where there

are time variable sources or RFI sources. In some cases we may want to keep a time series

of difference images and the model images used for the calibration.

We view imaging as a dynamic process which can be guided in real time by observers

inspecting the convergence of the model image and the χ2 image. As the observations

proceed, the observations can be moved to regions where more data are needed to define

the science goals, either regions of interest, or sources whose sidelobes are confusing, or new

sources which are discovered in the imaging process. Isoplanatic patches may vary during the

observations requiring different observation centers to adequately determine the calibration

across the sky.

The data archive serves as the data base for the observations, calibrations and instru-

ment status during the observations. The data streams from each phase center are saved

in the data archive along with the metadata. Data from the data archive can be replayed

though the imaging system so that the best model of the sky and calibration data from the

completed observations can be used to improve the calibration of the final image and extract

time variable sources.

7. CURRENT DEVELOPMENTS

In this paper we propose to develop adaptive real-time imaging using correlators and

beam formers with a high data bandwidth into computer clusters. The mismatch between

the data rates in the on-line DSP and those supported by off-line processing is resolved by

integrating the calibration and imaging with the data acquisition process. Calibration and

imaging are handled with the real-time feedback of the antenna calibration needed for beam

formers and RFI suppression.

Images can be made simultaneously for multiple regions within the field of view by

integrating the output from the correlators on multiple targets of interest, calibration sources,

and sources whose sidelobes confuse the regions of interest. The regions imaged are used

to update and improve the a-priori model, which becomes the final calibrated image by the

time the observations are complete.

A number of current telescopes are developing these concepts. The Allen Telescope

Array (Welch et al. 2009) is a leading prototype for the SKA. Small (6.1 m) dishes give the

ATA excellent survey speed for wide field imaging, with a frequency coverage from 0.5 to 11.2

GHz. The use of flexible digital signal processing enables multiple simultaneous observing
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projects and automated data processing (Keating et al. 2010). Figure 3 shows an example

of the data processing required for transient sources.

The Precision Array for Probing the Epoch of Re-ionization (PAPER) is an array of

precision dipoles to map the whole sky which uses a packetized correlator design (Parsons

et al. 2008). Calibration uses an all-sky model (Parsons et al. 2010).

The Murchison Wide-Field Array (MWA) is a low-frequency radio telescope to search

for the spectral signature of the epoch of reionization (EOR) and to probe the structure of

the solar corona. The MWA will have 128 antenna arrays capable of imaging the sky from

80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a

resolution of a few arcminutes (Mitchell et al. 2008). A data rate ∼1 GB/s with images every

8 s requires on-site, real-time processing and reduction in preference to archiving, transport

and off-line processing. Real time performance needs ∼2.5 TFLOP/s. Edgar et al (2010)

present a heterogeneous computing pipeline implementation, using GPUs which are a good

fit for pipeline processing, but lack flexibility or feedback into the data acquisition, e.g., RFI

detection and excision.

High performance digital signal processing enables us to handle high data rates from

aperture synthesis arrays in parallel, and to make images in close to real time. Adaptive

real-time data processing will revolutionize the science capabilities of existing and developing

telescopes, and have a broad impact on the way that radio telescope arrays can be used.

The current situation for aperture synthesis arrays may be compared with a jet-liner.

Both are extremely complicated and sophisticated systems. Both can be programmed to

function automatically to deliver the expected results. However, the pilot of the jet-liner has

the full power of the control systems to handle unexpected situations in real time. Whereas,

the astronomer has little real-time feedback, or ability to adapt the observations to new

discoveries, and, even worse, the unexpected result may not be in the data because off-line

data processing can not handle the data rate or computational needs. High performance

computing with real-time feedback to observers will enable us to optimize the observations

and calibrations needed to realize the science.
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Fig. 1.— Data flow from telescopes to images. Signals from each antenna are converted to
baseband (X) and digitized. The sampled bandwidth is divided into frequency channels using a
polyphase filter bank (F). The data are routed through ethernet switches into cross correlators
(X) for each pair of antennas and frequency channel to measure the correlation properties of the
incident radiation, and into beam formers to form phased array beams at multiple points in the sky
(IFP). The data are calibrated in the Solver by comparing the measured cross correlations, V (f, p),
with a sky brightness model, Model(s, f, p), to derive instrumental gains, Gains(s, f, p), primary
beams, PBeam(s, f, p), Bandpass(f), and polarization, PolCal(f, p), calibrations as a functions
of position, s, frequency, f , and polarization, p. Improvements to the sky model are made in the
Imager from the difference between the calibrated, measured cross correlations and those derived
from the sky model.
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Fig. 2.— Timing for 1280x1280x100-channel imaging using simulated MIRIAD data for ALMA
with 60 antennas in a 4 km configuration. The dashed line shows the time for applying the antenna-
based gains and bandpass calibrations to the uv data, or for subtracting the sky brightness model
from the uv data. The imaging step (dash-dotted line) applies the weights to the uv data, convolves
the calibrated uv data onto a gridded uv plane, and uses an FFT to make the synthesized multi-
channel image and synthesized beam. Off-line calibration and imaging is typically made in several
steps. In a real-time pipeline, these steps can be made in sequence on the data stream. The bottom
two lines show the time for deconvolving the synthesized beam response from the 100-channel image
using the CLEAN algorithm (dots), and convolving by a Gaussian beam (3-dot-dashs).
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Fig. 3.— Left: Image Cyg X-3 region obtained with the Allen Telescope Array at 3.09 GHz.
Right: Image of compact, time variable sources after subtracting the complex structure. (Peter
Williams, Feb 2011) . Cyg X-3, is a high-mass X-ray binary system that can increase its brightness
by a factor of ∼10 in an hour. Subtracting the large scale structure allows us to get high time-
resolution light curves of time variable sources. The off-line data processing took several hours,
and limits our ability to image time variable sources.
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