The DiFX software
correlator: capabilities
and performance

mﬂller, NRAO/UC Berkeley

| —— b e
FYIIT

oooooooooooooooooo

What is DiFX?

e A Distributed FX software correlator
e Written in C++, designed to run on x86 CPUs

e >95% of computation spent in vector
performance library - currently Intel
Performance Primitives is used

e Data distribution performed using MPI
(double buffered asynchronous transfers)

e Fast, flexible and widely adopted in the VLBI
community (LBA, VLBA, MPIfR, Haystack)

Mpifxcorr architecture

TDM: all antennas, one timeslot
processing buffer

CO re 1 processing buffer

Coarse delay alianmen
DataStream 1

t
Baseband data

processing buffer

w—— DataStream 2 Core 2
Source data
—>| DataStream N Core M
Large, segmented ring buffer
Timerange, destination Visibilities

Up to 100s MB/
a few or more seconds

Visibility buffer

Master Node

Visibility buffer
Visibility buffer

MPI is used for inter-process communications
Each data transfer is double buffered

FxManager correlation flow

e Start at the requested time, step one block of
FFTs at a time until end of correlation

e After the initial filling of buffers, sit in a loop
receiving subintegrations, adding the to
visibilities and sending commands off for
fresh data to be sent to processing nodes

e As visibilities are completed, release lock on
visibility buffer slot (second thread writes out)

Datastream correlation flow

e Two threads: Main (receives instructions,
sends data) and read (fills the buffer)

e Each maintains a lock on at least one
segment of the databuffer at all times

e \While data remains, the read thread will keep
populating the data buffer until told to stop

e Main thread just dumbly fulfils requests until
told to stop by Manager

e Sends a short flag to Core if no valid data

(YY)
0000
0000
. -4
Datastream correlation flow -
«Start time
Valid samples Read thread Requested
*Num sent time sent
*MPI_Send * handle Data buffer / to Core
*Lock

“‘Segment” /

I “Send” W Send thread

Core correlation flow

e N+1 threads: 1 for send/receive, the rest to
do actual correlation

e One buffer slot is processed at a time - each
process thread gets 1/Nth of the FFTs

e More locking is required so the threads can
aggregate their results, which are stored in
one long array (for ease of sending back)

e Keeps looping until a terminate message is
received from FxManager

Under the hood in Core

e Each thread is identical, and has an array of
“Mode” objects, which handle the station-
based processing for each Datastream

e Mode knows how to unpack the different
formats, and then handles fringe rotation,
FFT and fractional sample correction

e After telling each Mode to do its thing, the
thread grabs the appropriate results and
XMACs

Baseband data from

Co re i n p i ctu res each telescope

Read/send thread

\

Mode objects for

each datastream

\ Baseband data
pointer

Core
object

unpacked data

LL =

Intermediatiate dat:

Final data for XMAG

Repeated for
each subband

What do you get out?

e A dumb binary format is written by DIFX

e Essentially arbitrary time/frequency resolution,
start pay the cost in performance as you push
away from <100ms, <100 kHz

e Translated post-correlation to FITS-IDI (AIPS)

e Translation to other formats like Mark4/HOPS
(geodesy)

e Fast filterbank dump (separate over UDP)

DiFX advantages

e C++ is (reasonably) comprehensible and its
easy to add new features

e Intel updates IPP all the time to take best
advantage of new processors - someone else
Is doing the optimization

e Essentially the same architecture has been

used since the beginning of the project and it
still seems very efficient

e 32-bit throughout (delay calculations 64 bit) so
no artifacts

DiFX features

e Reads a large number of input formats (and
its easy to add more)

e Does phase calibration tone extraction

e Produce multiple phase centers in a single
correlator pass (uv shift inside the correlator)

e Can correlate mis-matched bands (e.g. 2x16
with 1x32, USB with LSB)

e High time res. filterbank dump, transients

e Many more; see:
http://cira.ivec.org/dokuwiki/doku.php/difx/start

Performance

e Convenient benchmark is the VLBA cluster:
10x dual quad core Intel 5420s @ 2.5 GHz,
cost around $20k in 2008

e Nowadays 2, maybe 3 dual 6 cores would do

e On this cluster DiF X sustains 512 Mbps (128
MHz bandwidth single pol, 64 MHz dual pol)
from 10 stations

e This is the small-N regime where station
based costs dominate, baseline based
becomes equal at roughly 20 antennas

Performance

Correlator performance comparison

1.6

1.4

1.2 [

Ratio record time/correlate time
o
[09]

»—x DiFX1.5
»—x DiIFX2.0
x—x FXCORR |

X

X

X

¥
X

b 4

~100 1000
Spectral points per 16 MHz subband

10000

Performance

Ratio record time/correlate time

0.5

©
IN

=
w

=
N

=
=

0.0

T

» -x Excluding disk write overhead

»—x |ncluding disk write overhead

~10 100
Number of independent phase centers

1000

Conclusions

e DIFX is a flexible and mature software
correlator

e It already has lots of nice features, but its
easy to add in more

e Performance is good - will never be a match
for GPUs, FPGAs or ASICs but can be
installed/used much quicker and is more
transferable

e Check out the wiki and sign up for the mailing
list if you're interested

